BACKGROUND New pharmacological approaches are needed to prevent stent restenosis. This study tested the hypothesis that pemafibrate, a novel clinical selective PPARα (peroxisome proliferator-activated receptor α) agonist, suppresses coronary stent-induced arterial inflammation and neointimal hyperplasia. METHODS AND RESULTS Yorkshire pigs randomly received either oral pemafibrate (30 mg/day; n=6) or control vehicle (n=7) for 7 days, followed by coronary arterial implantation of 3.5 × 12 mm bare metal stents (2-4 per animal; 44 stents total). On day 7, intracoronary molecular-structural near-infrared fluorescence and optical coherence tomography imaging was performed to assess the arterial inflammatory response, demonstrating that pemafibrate reduced stent-induced inflammatory protease activity (near-infrared fluorescence target-to-background ratio: pemafibrate, median [25th-75th percentile]: 2.8 [2.5-3.3] versus control, 4.1 [3.3-4.3], =0.02). At day 28, animals underwent repeat near-infrared fluorescence-optical coherence tomography imaging and were euthanized, and coronary stent tissue molecular and histological analyses. Day 28 optical coherence tomography imaging showed that pemafibrate significantly reduced stent neointima volume (pemafibrate, 43.1 [33.7-54.1] mm versus control, 54.2 [41.2-81.1] mm; =0.03). In addition, pemafibrate suppressed day 28 stent-induced cellular inflammation and neointima expression of the inflammatory mediators TNF-α (tumor necrosis factor-α) and MMP-9 (matrix metalloproteinase 9) and enhanced the smooth muscle differentiation markers calponin and smoothelin. In vitro assays indicated that the STAT3 (signal transducer and activator of transcription 3)-myocardin axes mediated the inhibitory effects of pemafibrate on smooth muscle cell proliferation. CONCLUSIONS Pemafibrate reduces preclinical coronary stent inflammation and neointimal hyperplasia following bare metal stent deployment. These results motivate further trials evaluating pemafibrate as a new strategy to prevent clinical stent restenosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8751880PMC
http://dx.doi.org/10.1161/JAHA.121.020834DOI Listing

Publication Analysis

Top Keywords

coherence tomography
12
tomography imaging
12
pemafibrate
11
selective pparα
8
pparα peroxisome
8
peroxisome proliferator-activated
8
proliferator-activated receptor
8
receptor agonist
8
stent inflammation
8
stent restenosis
8

Similar Publications

Optical coherence tomography angiography (OCTA) is an emerging, non-invasive technique increasingly utilized for retinal vasculature imaging. Analysis of OCTA images can effectively diagnose retinal diseases, unfortunately, complex vascular structures within OCTA images possess significant challenges for automated segmentation. A novel, fully convolutional dense connected residual network is proposed to effectively segment the vascular regions within OCTA images.

View Article and Find Full Text PDF

SD-LayerNet: Robust and label-efficient retinal layer segmentation via anatomical priors.

Comput Methods Programs Biomed

January 2025

Christian Doppler Laboratory for Artificial Intelligence in Retina, Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria; Institute of Artificial Intelligence, Center for Medical Data Science, Medical University of Vienna, Vienna, Austria.

Background And Objectives: Automated, anatomically coherent retinal layer segmentation in optical coherence tomography (OCT) is one of the most important components of retinal disease management. However, current methods rely on large amounts of labeled data, which can be difficult and expensive to obtain. In addition, these systems tend often propose anatomically impossible results, which undermines their clinical reliability.

View Article and Find Full Text PDF

Non-culprit plaque healing on serial OCT imaging and future outcome in patients with acute coronary syndromes.

Atherosclerosis

January 2025

State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Department of Cardiology of the Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China. Electronic address:

Background And Aims: Histologic studies indicated that healed plaque, characterized by a multilayered pattern, is indicative of prior atherothrombosis and subsequent healing. However, longitudinal in vivo data on healed plaque formation in non-culprit plaques are limited. This study aimed to investigate serial changes and clinical significance of new layered pattern formation in non-culprit plaques in patients with acute coronary syndromes (ACS) using serial optical coherence tomography (OCT) imaging.

View Article and Find Full Text PDF

Purpose: To identify the macular retinal layer thickness changes in polyarteritis nodosa (PAN) patients without pathological findings appearing in color fundus photography (CFP), and to investigate the correlations with disease durations.

Methods: A total of 24 PAN patients who had been for 3 years or more and underwent SD-OCT were recruited from the UK Biobank, with exclusions for diabetes, eye disease, or abnormal CFP findings. Only the right eyes were included, with each PAN patient paired one-to-one with a control matched for age, sex, and ethnicity.

View Article and Find Full Text PDF

New Directions for Ophthalmic OCT - Handhelds, Surgery, and Robotics.

Transl Vis Sci Technol

January 2025

Department of Biomedical Engineering, Duke University, Durham, NC, USA.

The introduction of optical coherence tomography (OCT) in the 1990s revolutionized diagnostic ophthalmic imaging. Initially, OCT's role was primarily in the adult ambulatory ophthalmic clinics. Subsequent advances in handheld form factors, integration into surgical microscopes, and robotic assistance have expanded OCT's utility and impact outside of its initial environment in the adult outpatient ophthalmic clinic.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!