A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Emerging Roles of Energy Metabolism in Ferroptosis Regulation of Tumor Cells. | LitMetric

Ferroptosis is a new form of regulated cell death, which is characterized by the iron-dependent accumulation of lethal lipid peroxides and involved in many critical diseases. Recent reports revealed that cellular energy metabolism activities such as glycolysis, pentose phosphate pathway (PPP), and tricarboxylic acid cycle are involved in the regulation of key ferroptosis markers such as reduced nicotinamide adenine dinucleotide phosphate (NADPH), glutathione (GSH), and reactive oxygen species (ROS), therefore imposing potential regulatory roles in ferroptosis. Remarkably, tumor cells can activate adaptive metabolic responses to inhibit ferroptosis for self-preservation such as the upregulation of glycolysis and PPP. Due to the rapid proliferation of tumor cells and the intensified metabolic rate, tumor energy metabolism has become a target for disrupting the redox homeostasis and induce ferroptosis. Based on these emerging insights, regulatory impact of those-tumor specific metabolic aberrations is systematically characterized, such as rewired glucose metabolism and metabolic compensation through glutamine utilization on ferroptosis and analyzed the underlying molecular mechanisms. Additionally, those ferroptosis-based therapeutic strategies are also discussed by exploiting those metabolic vulnerabilities, which may open up new avenues for tumor treatment in a clinical context.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8596140PMC
http://dx.doi.org/10.1002/advs.202100997DOI Listing

Publication Analysis

Top Keywords

energy metabolism
12
tumor cells
12
ferroptosis
7
tumor
5
metabolic
5
emerging roles
4
roles energy
4
metabolism
4
metabolism ferroptosis
4
ferroptosis regulation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!