Risk assessment is critical for identifying target concentrations of antibiotic resistant pathogens necessary for mitigating potential harmful exposures associated with water reuse. However, there is currently limited available data characterizing the concentrations of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in recycled water to support robust efforts at risk assessment. The objective of this systematic review was to identify and synthesize the existing literature documenting the presence and abundance of ARB and ARGs in recycled water. In addition, this review identifies best practices and explores monitoring targets for studying ARB and ARGs in recycled water to guide future work and identifies key research needs aimed at better supporting quantitative microbial risk assessment focused on recycled water and antibiotic resistance. Future efforts to collect data about ARB and ARG prevalence in recycled water should report concentration data per unit volume. Sample metadata should also be provided, including a description of treatment approach, a description of planned water uses (e.g., potable, irrigation), methods for conveyance to the point of use, and available physicochemical water quality data. Additional research is needed aimed at identifying recommended ARB and ARG monitoring targets and for developing approaches to incorporate metagenomic data into risk assessment.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1462-2920.15804DOI Listing

Publication Analysis

Top Keywords

recycled water
24
risk assessment
20
antibiotic resistant
12
args recycled
12
water
9
resistant pathogens
8
systematic review
8
concentrations antibiotic
8
antibiotic resistance
8
arb args
8

Similar Publications

The recovery of valuable materials from spent lithium-ion batteries (LIBs) has experienced increasing demand in recent years. Current recycling technologies are typically energy-intensive and are often plagued by high operation costs, low processing efficiency, and environmental pollution concerns. In this study, an efficient and environmentally friendly dielectrophoresis (DEP)-based approach is proposed to separate the main components of "black mass" mixtures from LIBs, specifically lithium iron phosphate (LFP) and graphite, based on their polarizability differences.

View Article and Find Full Text PDF

Solvometallurgical recovery of antimony from waste polyvinyl chloride plastic and co-extraction of organic additives.

RSC Adv

January 2025

Waste Recycling Technologies, Materials & Chemistry Unit, Flemish Institute for Technological Research, VITO N.V. Boeretang 200 B-2400 Mol Belgium

Antimony is a critical raw material in Europe wherein for 43% of its market share it is applied in the form of antimony trioxide as a fire retardant in plastics. Currently, antimony recycling from waste plastics does not take place and has been scarcely studied. In this work, a process was developed to extract antimony from a soft PVC material and recover it as SbClO.

View Article and Find Full Text PDF

In order to solve the problems of rutting and early fatigue cracks in emulsified asphalt cold recycled pavement, and the shortage of natural stone resources and new environmental hazards caused by the use of traditional limestone powder filler. In this study, coal gangue powder was added to prepare Emulsified Asphalt Mastic (EAM) to improve the rheological properties and fatigue performance. A series of tests, including frequency scanning, temperature scanning, Multiple Stress Creep Recovery (MSCR), Linear Amplitude Scanning (LAS), and Fourier Transform Infrared spectroscopy (FTIR) were conducted.

View Article and Find Full Text PDF

Solar-driven interfacial evaporation is one of the most attractive approaches to addressing the global freshwater shortage. However, achieving an integrated high evaporation rate, salt harvesting, and multifunctionality in evaporator is still a crucial challenge. Here, a novel composite membrane with biomimetic micro-nanostructured superhydrophobic surface is designed via ultrafast laser etching technology.

View Article and Find Full Text PDF

A perspective on field-effect in energy and environmental catalysis.

Chem Sci

December 2024

Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University Changsha 410083 P. R. China

The development of catalytic technologies for sustainable energy conversion is a critical step toward addressing fossil fuel depletion and associated environmental challenges. High-efficiency catalysts are fundamental to advancing these technologies. Recently, field-effect facilitated catalytic processes have emerged as a promising approach in energy and environmental applications, including water splitting, CO reduction, nitrogen reduction, organic electrosynthesis, and biomass recycling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!