Long-Term Survival Outcomes and Comparison of Different Treatment Modalities for Stage I-III Cervical Esophageal Carcinoma.

Front Med (Lausanne)

Department of Radiation Oncology, Oncology Center of Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China.

Published: September 2021

To investigate the survival outcomes, prognostic factors and treatment modalities of stage I-III cervical esophageal carcinoma (CEC) patients using data from the Surveillance, Epidemiology, and End Results (SEER) database from the period 2004-2016. Patients with a histopathologic diagnosis of CEC were included. The primary endpoint was overall survival (OS). Univariate and multivariate analyses of OS were performed using Cox proportional hazards models, and OS was compared using the Kaplan-Meier method and log-rank test. A total of 347 patients in the SEER database were enrolled. The median OS was 14.0 months, with a 5-year OS rate of 20.9%. The parameters that were found to significantly correlate with OS in the multivariate analysis were age at diagnosis [ < 0.001, hazard ratio (HR) = 1.832], sex [ < 0.001, HR= 1.867], histology [ = 0.001, HR = 0.366], surgery at the primary site [ = 0.021, HR = 0.553], radiotherapy (RT, = 0.017, HR = 0.637) and chemotherapy (CT, < 0.001, HR = 0.444). Comparison among the three treatment modalities demonstrated that a triple therapy regimen consisting of surgery, RT and CT was associated with a longer survival time than the other two treatment modalities before and after propensity score matching (PSM). However, triple therapy showed no significant survival benefit over double therapy ( = 0.496 before PSM and = 0.184 after PSM). The survival of patients with CEC remains poor. Surgery, RT and CT were all strongly correlated with OS. We recommend a triple therapy regimen for select CEC patients based on the findings of the current study, although this recommendation should be further confirmed by prospective studies with large sample sizes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8492900PMC
http://dx.doi.org/10.3389/fmed.2021.714619DOI Listing

Publication Analysis

Top Keywords

treatment modalities
16
triple therapy
12
survival outcomes
8
modalities stage
8
stage i-iii
8
i-iii cervical
8
cervical esophageal
8
esophageal carcinoma
8
cec patients
8
seer database
8

Similar Publications

Refining minimal engineered receptors for specific activation of on-target signaling molecules.

Sci Rep

December 2024

Laboratory of Cell Vaccine, Microbial Research Center for Health and Medicine (MRCHM), National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki-Shi, Osaka, 567-0085, Japan.

Since designer cells are attracting much attention as a new modality in gene and cell therapy, it would be advantageous to develop synthetic receptors that recognize artificial ligands and activate solely signaling molecules of interest. In this study, we refined the construction of our previously developed minimal engineered receptors (MERs) to avoid off-target activation of STAT5 while maintaining on-target activation of signaling molecules corresponding to tyrosine motifs. Among the myristoylated, cytoplasmic, and transmembrane types of MERs, the cytoplasmic type had the highest signaling efficiency, although there was off-target activation of STAT5 upon ligand stimulation.

View Article and Find Full Text PDF

Deafness is the most common form of sensory impairment in humans and frequently caused by defects in hair cells of the inner ear. Here we demonstrate that in male mice which model recessive non-syndromic deafness (DFNB6), inactivation of Tmie in hair cells disrupts gene expression in the neurons that innervate them. This includes genes regulating axonal pathfinding and synaptogenesis, two processes that are disrupted in the inner ear of the mutant mice.

View Article and Find Full Text PDF

Malate initiates a proton-sensing pathway essential for pH regulation of inflammation.

Signal Transduct Target Ther

December 2024

Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China.

Metabolites can double as a signaling modality that initiates physiological adaptations. Metabolism, a chemical language encoding biological information, has been recognized as a powerful principle directing inflammatory responses. Cytosolic pH is a regulator of inflammatory response in macrophages.

View Article and Find Full Text PDF

Patients with recurrent high-grade glioma (rHGG) have a poor prognosis with median progression-free survival (PFS) of <7 months. Responses to treatment are heterogenous, suggesting a clinical need for prognostic models. Bayesian data analysis can exploit individual patient follow-up imaging studies to adaptively predict the risk of progression.

View Article and Find Full Text PDF

Multi-Functional Bio-HJzyme Engineered Polyetheretherketone Implant with Cascade-Amplification Therapeutic Capabilities Toward Intractable Implant-Associated Infections.

Small

December 2024

State Key Laboratory of Oral Diseases, School of Chemical Engineering, National Center for Stomatology & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China.

Intractable implant-associated infections (IAIs) are the primary cause of prosthetic implant failure, particularly in the context of diabetes mellitus. There is an urgent need to design and construct versatile engineered implants integrated with cascade amplification therapeutic modality to significantly improve the treatment of diabetic IAIs. To address this issue, a multi-functional MXene/AgPO@glucose oxidase bio-heterojunction enzyme (M/A@GOx bio-HJzyme) coating is developed, which is decorated with an inert sulfonated polyetheretherketone implant (SP-M/A@G) via hydrothermal treatment and layered deposition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!