Purpose: To investigate the potential clinical benefits of using stereotactic body radiation therapy (SBRT) with simultaneous integrated boost (SIB) technique for locally advanced pancreatic cancer (LAPC) among different treatment modalities and planning strategies, including photon and proton.

Method: A total of 19 patients were retrospectively selected in this study: 13 cases with the tumor located in the head of the pancreas and 6 cases with the tumor in the body of the pancreas. SBRT-SIB plans were generated using volumetric modulated arc therapy (VMAT), two-field Intensity Modulated Proton Therapy (IMPT), and three-field IMPT. The IMPT used the robust optimization parameters of ± 3.5% range and 5-mm setup uncertainties. Root-mean-square deviation dose (RMSD) volume histograms were used to evaluate the target coverage robustness quantitatively. Dosimetric metrics based on the dose-volume histogram (DVH), homogeneity index (HI), and normal tissue complication probability (NTCP) were analyzed to evaluate the potential clinical benefits among different planning groups.

Results: With a similar CTV and SIB coverage, two-field IMPT provided a lower maximum dose for the stomach (median: 18.6GyE, p<0.05) and duodenum (median: 32.62GyE, p<0.05) when the target was located in the head of the pancreas compared to VMAT and three-field IMPT. The risks of gastric bleed (3.42%) and grade ≥ 3 GI toxicity (4.55%) were also decreased. However, for the target in the body of the pancreas, VMAT showed a lower maximum dose for the stomach (median 30.93GyE, p<0.05) and toxicity of gastric bleed (median: 8.67%, p<0.05) compared to two-field IMPT and three-field IMPT, while other maximum doses and NTCPs were similar. The RMSD volume histogram (RVH) analysis shows that three-field IMPT provided better robustness for targets but not for OARs. Instead, three-field IMPT increased the Dmean of organs such as the stomach, duodenum, and intestine.

Conclusion: The results indicated that the tumor locations could play a critical role in determining clinical benefits among different treatment modalities. Two-field IMPT could be a better option for LAPC patients whose tumors are located in the head of the pancreas. It provides lower severe toxicity for the stomach and duodenum. Nevertheless, VMAT is preferred for the body with better protection for the possibility of gastric bleed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8493097PMC
http://dx.doi.org/10.3389/fonc.2021.747532DOI Listing

Publication Analysis

Top Keywords

potential clinical
12
clinical benefits
12
stereotactic body
8
body radiation
8
radiation therapy
8
simultaneous integrated
8
integrated boost
8
technique locally
8
locally advanced
8
advanced pancreatic
8

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

GSK R&D, Stevenage, Hertfordshire, United Kingdom.

Background: Genetic variants in GRN, the gene encoding progranulin, are causal for or are associated with the risk of multiple neurodegenerative diseases. Modulating progranulin has been considered as a therapeutic strategy for neurodegenerative diseases including Frontotemporal Dementia (FTD) and Alzheimer's Disease (AD). Here, we integrated genetics with proteomic data to determine the causal human evidence for the therapeutic benefit of modulating progranulin in AD.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

ECU, Perth, Western Australia, Australia.

Background: The autophagy lysosomal pathway (ALP) and the ubiquitin-proteasome system (UPS) are key proteostasis mechanisms in cells, which are dysfunctional in AD and linked to protein aggregation and neuronal death. Autophagy is over activated in Alzheimer's disease brain whereas UPS is severely impaired. Activating autophagy has received most attention, however recent evidence suggests that UPS can clear aggregate proteins and a potential therapeutic target for AD and protein misfolding diseases.

View Article and Find Full Text PDF

Background: The presence of multiple comorbid pathologic features in late-onset dementia has been well documented across cohort studies that incorporate autopsy evaluation. It is likely that such mixed pathology potentially confounds the results of interventional trials that are designed to target a solitary pathophysiologic mechanism in Alzheimer's disease and related dementias (ADRD).

Method: The UK ADRC autopsy database was screened for participants who had previously engaged in therapeutic interventional trials for Alzheimer's disease, vascular cognitive impairment, dementia, and/or ADRD prevention trials from 2005 to the present.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, North Holland, Netherlands.

The lack of an in-vivo pathology marker for synuclein pathology has been a long standing challenge for dementia for Lewy bodies (DLB) research. This issue is critically important for phase II trials, which are often small, requiring the precise measurement of the biological effects, whether disease modifying or symptomatic. Recent advances have enabled the determination of alpha-synuclein pathology status with CSF measurements, using aggregation assays [RT-QUIC].

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Suven Life Sciences, Hyderabad, Telangana, India.

Background: Alzheimer's disease (AD) agitation is a distressing neuropsychiatric symptom characterized by excessive motor activity, verbal aggression, or physical aggression. Agitation is one of the causes of caregiver distress, increased morbidity and mortality, and early institutionalization in patients with AD. Current medications used for the management of agitation have modest efficacy and have substantial side effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!