A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Increased expression of TCF3, transcription factor 3, is a defense response against methylmercury toxicity in mouse neuronal C17.2 cells. | LitMetric

Increased expression of TCF3, transcription factor 3, is a defense response against methylmercury toxicity in mouse neuronal C17.2 cells.

Toxicol Res

Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578 Japan.

Published: October 2021

Methylmercury is an environmental pollutant that induces potent neurotoxicity. We previously identified transcription factor 3 (TCF3) as a transcription factor that is activated in the brains of mice treated with methylmercury, and reported that methylmercury sensitivity was increased in cells in which TCF3 expression was suppressed. However, the mechanisms involved in the activation of TCF3 by methylmercury and in the reduction of methylmercury toxicity by TCF3 remained unclear. We found that treatment of mouse neuronal C17.2 cells with methylmercury increased TCF3 protein levels and promoted the binding of TCF3 to DNA consensus sequences. In cells treated with actinomycin D, a transcription inhibitor, an increase in TCF3 protein levels was also observed under methylmercury exposure. However, in the presence of cycloheximide, a translation inhibitor, methylmercury delayed the degradation of TCF3 protein. In addition, treatment with MG132, a proteasome inhibitor, increased TCF3 protein levels, and there was not significant increase in TCF3 protein levels by methylmercury under these conditions. These results suggest that methylmercury may activate TCF3 by increasing its levels through inhibition of TCF3 degradation by the proteasome. It has been previously reported that the induction of apoptosis in neurons is involved in methylmercury-induced neuronal damage in the brain. Although apoptosis was induced in C17.2 cells treated with methylmercury, this induction was largely suppressed by overexpression of TCF3. These results indicate that TCF3, which is increased in the brain upon exposure to methylmercury, may be a novel defense factor against methylmercury-induced neurotoxicity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8476663PMC
http://dx.doi.org/10.1007/s43188-021-00087-0DOI Listing

Publication Analysis

Top Keywords

tcf3 protein
20
protein levels
16
tcf3
15
methylmercury
13
transcription factor
12
c172 cells
12
tcf3 transcription
8
methylmercury toxicity
8
mouse neuronal
8
neuronal c172
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!