cGAS- Stimulator of Interferon Genes Signaling in Central Nervous System Disorders.

Aging Dis

1Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.

Published: October 2021

Cytosolic nucleic acid sensors contribute to the initiation of innate immune responses by playing a critical role in the detection of pathogens and endogenous nucleic acids. The cytosolic DNA sensor cyclic-GMP-AMP synthase (cGAS) and its downstream effector, stimulator of interferon genes (STING), mediate innate immune signaling by promoting the release of type I interferons (IFNs) and other inflammatory cytokines. These biomolecules are suggested to play critical roles in host defense, senescence, and tumor immunity. Recent studies have demonstrated that cGAS-STING signaling is strongly implicated in the pathogenesis of central nervous system (CNS) diseases which are underscored by neuroinflammatory-driven disease progression. Understanding and regulating the interactions between cGAS-STING signaling and the nervous system may thus provide an effective approach to prevent or delay late-onset CNS disorders. Here, we present a review of recent advances in the literature on cGAS-STING signaling and provide a comprehensive overview of the modulatory patterns of the cGAS-STING pathway in CNS disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8460300PMC
http://dx.doi.org/10.14336/AD.2021.0304DOI Listing

Publication Analysis

Top Keywords

nervous system
12
cgas-sting signaling
12
stimulator interferon
8
interferon genes
8
central nervous
8
innate immune
8
cns disorders
8
signaling
5
cgas- stimulator
4
genes signaling
4

Similar Publications

The elimination of superfluous neurons via apoptosis and subsequent glial phagocytosis is crucial for the development of the central nervous system (CNS). In Drosophila, two glial phagocytic receptors, six-microns-under (SIMU) and Draper, mediate the phagocytosis of apoptotic neurons during embryogenesis. However, in simu;draper double-mutant embryos, some apoptotic neurons are still engulfed by the glia, suggesting the involvement of additional receptors.

View Article and Find Full Text PDF

Bisphenol A (BPA), an environmental endocrine disrupting chemical, is one of the most widely used chemicals in the world and is widely distributed in the external environment, specifically in food, water, dust, and soil. BPA exposure is associated with abnormal cognitive behaviors. However, the underlying mechanism remains unclear.

View Article and Find Full Text PDF

Increasing evidence suggests that inhibition of receptor-interacting serine/threonine-protein kinase (RIPK) 1/RIPK3/mixed lineage kinase domain-like pseudokinase (MLKL) necrosome has protective effects in vivo models of painful conditions seen in humans associated with inflammation and demyelination in the central nervous system. However, the contribution of RIPK1-driven necroptosis to inflammatory pain remains unknown. Therefore, this study aims to determine the effect of necrostatin (Nec) -1s, a selective RIPK1 inhibitor, on lipopolysaccharide (LPS)-induced inflammatory pain and related underlying mechanisms.

View Article and Find Full Text PDF

A pathological condition in the peripheral nerve tissue, which provides the connection between the organism and the external environment, negatively affects the standard of living. The nerve tissue histotechnology is of serious importance both for scientific studies and for clinical diagnosis. The fixation, which is one of the leading procedures for histological examination of tissues, aims to preserve tissue morphology.

View Article and Find Full Text PDF

Artificial enforcement of the unfolded protein response (UPR) reduces disease features in multiple preclinical models of ALS/FTD.

Mol Ther

January 2025

Program of Cellular and Molecular Biology, Biomedical Sciences Institute (ICBM), Universidad de Chile, Santiago, Chile; Biomedical Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA, USA. Electronic address:

Amyotrophic lateral sclerosis (ALS) and fronto-temporal dementia (FTD) are part of a spectrum of diseases that share several causative genes, resulting in a combinatory of motor and cognitive symptoms and abnormal protein aggregation. Multiple unbiased studies have revealed that proteostasis impairment at the level of the endoplasmic reticulum (ER) is a transversal pathogenic feature of ALS/FTD. The transcription factor XBP1s is a master regulator of the unfolded protein response (UPR), the main adaptive pathway to cope with ER stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!