An in vitro study of ApxI from serotype 10 and induction of NLRP3 inflammasome-dependent cell death.

Vet Rec Open

Laboratorio de Biología Celular y Tisular Departamento de Morfología Universidad Autónoma de Aguascalientes (UAA) Aguascalientes Mexico.

Published: December 2021

AI Article Synopsis

  • The study investigates how ApxI, a toxin from Actinobacillus pleuropneumonia, induces rapid cell death in porcine alveolar macrophages and endothelial cells through a process called pyroptosis, which is dependent on the NLRP3 inflammasome and caspase-1 activation.
  • Researchers used various inhibitors to block caspase-1 and the NLRP3 inflammasome, finding that these treatments reduced cell death caused by ApxI, indicating the involvement of these pathways in the cell death process.
  • The findings reveal that ApxI triggers pyroptosis in alveolar macrophages for the first time, highlighting the significant role of the N

Article Abstract

Background: (AP) is the causative agent of porcine pleuropneumonia. Apx exotoxins are the most important virulence factors associated with the induction of lesions. ApxI is highly cytotoxic on a wide range of cells. Besides the induction of necrosis and apoptosis of ApxI on porcine alveolar macrophages (PAMs), its role in pyroptosis, a caspase-1-dependent form of cell death, has not been reported. The aim of this study was to analyse if NLRP3 inflammasome participates in cell death induced by ApxI.

Methods: PAMs, the porcine alveolar macrophage cell line 3D4/21 and a porcine aortic endothelial cell line were used in this study. We used Z-VAD-FMK and Ac-YVAD-cmk to inhibit caspase-1. Glyburide and MCC950 were used to inhibit the NLRP3 inflammasome. A lactate dehydrogenase release assay was used to measure the percentage of cell death. Caspase-1 expression was analysed by immunofluorescence. End-point RT-PCR was used to analyse the expression of NLRP3 mRNA.

Results: Rapid cell death in PAMs, 3D4/21 cells and the endothelial cell line were induced by ApxI. This cell death decreased by using caspase-1 and NLRP3 inflammasome inhibitors and by blocking the K efflux. Expression of NLRP3 mRNA was induced by ApxI in alveolar macrophages while it was constitutive in the endothelial cell line. Detection of caspase-1 in alveolar macrophages was higher after ApxI treatment and it was blocked by MCC950 or heat inactivation.

Conclusions: To the best of the authors' knowledge, we have described for the first time in vitro induction of ApxI associated pyroptosis in alveolar macrophages and endothelial cells, a rapid cell death that depends on the activation of caspase-1 via the NLRP3 inflammasome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8490337PMC
http://dx.doi.org/10.1002/vro2.20DOI Listing

Publication Analysis

Top Keywords

cell death
28
alveolar macrophages
16
nlrp3 inflammasome
16
endothelial cell
12
cell
11
porcine alveolar
8
expression nlrp3
8
rapid cell
8
induced apxi
8
caspase-1 nlrp3
8

Similar Publications

Background: The metabolism of stearoyl-GPE plays a key role in the liver metastasis of gastric cancer. This investigation delves into the mechanisms underlying the intricate tumor microenvironment (TME) heterogeneity triggered by stearoyl metabolism in gastric cancer with liver metastasis (LMGC), offering novel perspectives for LMGC.

Objective: Utilizing Mendelian randomization, we determined that stearoyl metabolism significantly contributes to the progression of gastric cancer (GC).

View Article and Find Full Text PDF

Antimicrobial and Cytotoxic Potential of Endophytic Aspergillus versicolor Isolate from the Medicinal Plant Plectranthus amboinicus.

Curr Microbiol

January 2025

Department of Microbiology and Botany, School of Sciences, J. C. Road, JAIN (Deemed-to-be University), Bangalore, Karnataka, 560027, India.

Endophytic fungi are non-pathogenic organisms that colonise healthy plant tissues asymptomatically. Endophytes derived from medicinal plants are sources for identifying natural products and bioactive compounds with potential uses for industry, medicine, agriculture, and related sectors. In the present study, ethyl acetate crude extracts of four endophytic fungal isolates (CALF1, CALF4, and CASF1) from the medicinal plant Plectranthus amboinicus showed potent antimicrobial activity against the test pathogenic bacteria Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Bacillus subtilis using disc diffusion assays.

View Article and Find Full Text PDF

Photoactive complexes of bioessential 3d metals, activable within the phototherapeutic window (650-900 nm), have gained widespread interest due to their therapeutic potential. Herein, we report the synthesis, characterization, and light-enhanced anticancer and antibacterial properties of four new dinuclear Co(II) complexes: [Co(phen)(cat)] (Co-1), [Co(dppz)(cat)] (Co-2), [Co(phen)(esc)] (Co-3), and [Co(dppz)(esc)] (Co-4). In these complexes, phen (1,10-phenanthroline) and dppz (dipyrido[3,2-:2',3'-]phenazine) act as neutral N,N-donor ligands, while cat and esc serve as O,O-donor catecholate ligands derived from catechol (1,2-dihydroxybenzene) and esculetin (6,7-dihydroxy coumarin).

View Article and Find Full Text PDF

Podocytes are essential to maintain the normal filtration function of glomerular basement membrane, which could be injured by ischemia-reperfusion. As complicated function of autophagy in terminal differentiated podocytes, autophagy dysfunction might contribute to I/R induced renal dysfunction following glomerular filtration membrane (GFM) injuries. Meanwhile, apelin-13, an endogenous polypeptide, has been proved to be effective in regulating autophagy and apoptosis in podocytes.

View Article and Find Full Text PDF

Study Design: Genome-wide association study (GWAS) meta-analysis with downstream analyses.

Objective: To explore the genetic architecture of chronic low back pain (cLBP) and identify underlying biological mechanisms that contribute to its development.

Summary Of Background Data: Chronic low back pain is prevalent and debilitating, with many cases having no identifiable biological cause.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!