H19 Overexpression Improved Efficacy of Mesenchymal Stem Cells in Ulcerative Colitis by Modulating the miR-141/ICAM-1 and miR-139/CXCR4 Axes.

Dis Markers

Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China.

Published: January 2022

Overexpression of C-X-C motif chemokine receptor 4 (CXCR4) and intercellular cell adhesion molecule-1 (ICAM-1) may promote homing of mesenchymal stem cells (MSC). In this study, we treated ulcerative colitis animals with MSC preconditioned with or without H19 and compared the therapeutic effect of MSC and MSC-H19. We evaluated the regulatory relationship of H19 vs. miR-141/miR-139 and miR-141/miR-139 vs. ICAM-1/CXCR4. We established an ulcerative colitis mouse model to assess the effect of MSC and MSC-H19. H19 was found to bind to miR-141 and miR-139. The activity of H19 was strongly decreased in cells c-transfected with miR-141/miR-139 and WT H19. ICAM-1 was confirmed to be targeted by miR-141 and CXCR4 was targeted by miR-139. The H19 expression showed a negative regulatory relationship with the miR-141 and miR-139 expression but a positive regulatory relationship with the ICAM-1 and CXCR4 expression. In summary, the overexpression of H19 in MSC downregulated miR-139 and miR-141, thus increasing the activity of their targets ICAM-1 and CXCR4, respectively, to exhibit therapeutic effects in ulcerative colitis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8494579PMC
http://dx.doi.org/10.1155/2021/7107705DOI Listing

Publication Analysis

Top Keywords

ulcerative colitis
16
regulatory relationship
12
h19
8
mesenchymal stem
8
stem cells
8
msc msc-h19
8
mir-141 mir-139
8
icam-1 cxcr4
8
msc
5
h19 overexpression
4

Similar Publications

Ulcerative colitis can present with extra-intestinal manifestations, including interstitial lung disease and primary sclerosing cholangitis. When pulmonary symptoms precede gastrointestinal, diagnosis can be challenging. Consideration of Ulcerative colitis in patients with unexplained lung and hepatic pathology is crucial, as a failure of timely intervention can lead to multiorgan complications.

View Article and Find Full Text PDF

Background Ulcerative colitis (UC) is a common chronic disease. Perceived stress is one of the risk factors that stimulate UC activity. Long-term clinical suffering negatively alters the health-related quality of life (HRQOL).

View Article and Find Full Text PDF

Application of Chinese Medicine in Treatment of Ulcerative Colitis and Elucidation of Relevant Mechanisms.

Chin J Integr Med

January 2025

Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830017, China.

Ulcerative colitis (UC) is a chronic, non-specific intestinal disease of unknown etiology, with high incidence rates worldwide. At present, Western medicine treatments have been associated with more adverse effects and poor efficacy. Chinese medicine (CM) is commonly used as an adjuvant treatment for the unique advantages in regulating immune function, repairing intestinal mucosa, and alleviating intestinal inflammation.

View Article and Find Full Text PDF

Inhibition of chondroitin sulphate-degrading enzyme Chondroitinase ABC by dextran sulphate.

Glycoconj J

January 2025

School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia.

Chondroitin sulphate (CS) is a sulphated glycosaminoglycan (GAG) polysaccharide found on proteoglycans (CSPGs) in extracellular and pericellular matrices. Chondroitinase ABC (CSase ABC) derived from Proteus vulgaris is an enzyme that has gained attention for the capacity to cleave chondroitin sulphate (CS) glycosaminoglycans (GAG) from various proteoglycans such as Aggrecan, Neurocan, Decorin etc. The substrate specificity of CSase ABC is well-known for targeting various structural motifs of CS chains and has gained popularity in the field of neuro-regeneration by selective degradation of CS GAG chains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!