The aim of the present study was to investigate the expression and role of microRNA-18a-5p (miR-18a-5p) during the formation of hypertrophic scar (HS), and to further explore the molecular mechanisms involved. Downregulation of miR-18a-5p in HS tissues and human HS fibroblasts (hHSFs) was detected by reverse transcription-quantitative polymerase chain reaction. The binding sites between miR-18a-5p and the 3'-untranslated region of SMAD family member 2 (Smad2) were predicted by TargetScan and confirmed by dual-luciferase reporter assay. To investigate the role of miR-18a-5p in HS formation, the effects of miR-18a-5p downregulation or upregulation on hHSFs were subsequently determined. Cell proliferation was detected by an MTT assay, while cell apoptosis was measured by flow cytometry. In addition, the protein expression levels of Smad2, Collagen I (Col I) and Col III were examined by western blot assay. The findings indicated that miR-18a-5p downregulation in hHSFs significantly promoted the cell proliferation, decreased cell apoptosis and enhanced the expression levels of Smad2, Col I and Col III protein and mRNA, whereas miR-18a-5p upregulation in hHSFs exerted opposite effects. Notably, the effects of miR-18a-5p upregulation on hHSFs were eliminated by Smad2 upregulation. In conclusion, the data indicated that miR-18a-5p was downregulated during HS formation, and its upregulation repressed scar fibroblast proliferation and extracellular matrix deposition by targeting Smad2. Therefore, miR-18a-5p may serve as a novel therapeutic target for the treatment of HS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8495553 | PMC |
http://dx.doi.org/10.3892/etm.2021.10753 | DOI Listing |
Heliyon
November 2024
Nantong University, Nantong City, Jiangsu Province, 226001, China.
Background And Objective: The circular RNA hsa_circ_0007755 is markedly upregulated in hypertrophic scars (HS), yet its functional roles in this fibroproliferative disorder remain to be elucidated. This investigation aims to delineate the regulatory mechanisms of hsa_circ_0007755 in HS and to decode its downstream molecular signaling pathways.
Methods: We established a murine model of HS.
Exp Ther Med
November 2021
Department of Plastic and Cosmetic Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China.
The aim of the present study was to investigate the expression and role of microRNA-18a-5p (miR-18a-5p) during the formation of hypertrophic scar (HS), and to further explore the molecular mechanisms involved. Downregulation of miR-18a-5p in HS tissues and human HS fibroblasts (hHSFs) was detected by reverse transcription-quantitative polymerase chain reaction. The binding sites between miR-18a-5p and the 3'-untranslated region of SMAD family member 2 (Smad2) were predicted by TargetScan and confirmed by dual-luciferase reporter assay.
View Article and Find Full Text PDFWound Repair Regen
September 2021
Shanghai Burns Institute, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Hypertrophic scars (HSs) form due to unchecked proliferation of fibrous tissue after an injury to the skin. Recently, lncRNA MIR503HG was shown to be involved in HS. However, the mechanism by which MIR503HG affects the formation and progression of HS still needs further study.
View Article and Find Full Text PDFHypertrophic scars (HSs) are characterized by excessive extracellular matrix deposition and excessive growth of dense fibrous tissues. MicroRNAs (miRNAs/miRs) serve key roles in HS formation. The present study investigated the expression, role and mechanism underlying the effects of miR-497-5p in HS formation.
View Article and Find Full Text PDFExp Ther Med
May 2018
Department of Burns and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China.
Hypertrophic scar (HS) is a fibrotic disease in which excessive extracellular matrix forms due to the response of fibroblasts to tissue damage. Novel evidence suggests that microRNAs (miRNAs or miRs) may contribute to hypertrophic scarring; however, the role of miRNAs in HS formation remains unclear. In the present study, miR-26a was significantly downregulated in HS tissues and human HS fibroblasts (hHSFs) was detected by reverse transcription-quantitative analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!