Sinomenine is a pure alkaloid that can be isolated from the root of and has been found to exert anti-inflammatory and immunosuppressive effects. The present study investigated the effects of sinomenine hydrochloride (SIN) on inflammation and the gut microbiota composition in the colon of mouse models of dextran sulfate sodium (DSS)-induced colitis. DSS-induced mice colitis was established by treating the mice with drinking water containing 3% (w/v) DSS for 7 days. The disease activity index of each mouse was calculated on a daily basis. All mice were sacrificed on day 11, then the weight of their spleen and length of their colons were measured. The histological analysis was measured by hematoxylin-eosin staining. Oral administration of SIN (100 mg/kg/day) attenuated the DSS-induced increases in the disease activity indices and spleen indices, DSS-induced shortening of the colon length and histological damage. In addition, reverse transcription-quantitative PCR data showed that SIN treatment effectively regulated the expression of inflammatory mediators, specifically by suppressing the expression of proinflammatory gene (TNF-α, IL-6 and inducible nitric oxide synthase) whilst increasing those associated with inhibiting inflammation (IL-10 and arginine 1). Gut microbiota analysis was conducted using 16S ribosomal DNA sequencing. The results revealed that SIN improved bacterial community homeostasis and diversity, which were damaged by DSS. Furthermore, western blotting showed that the activation of the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome was markedly suppressed by SIN treatment. In conclusion, these results indicated that SIN may ameliorate experimental colitis by modulating the gut microbiota composition and suppressing the activation of the NLRP3 inflammasome in mice. Overall, these findings suggested a broad protective effect of SIN in treating inflammatory gut diseases, including ulcerative colitis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8461516PMC
http://dx.doi.org/10.3892/etm.2021.10722DOI Listing

Publication Analysis

Top Keywords

gut microbiota
16
microbiota composition
12
nlrp3 inflammasome
12
sinomenine hydrochloride
8
dextran sulfate
8
modulating gut
8
suppressing activation
8
activation nlrp3
8
disease activity
8
sin treatment
8

Similar Publications

Type 2 diabetes mellitus (T2DM) represents a chronic metabolic disorder characterized by disrupted carbohydrate and lipid balance, resulting in hyperglycemia. This study evaluated the impact of polysaccharides derived from Cynanchum auriculatum Royle ex Wight (CRP) on mitigating hyperglycemia and modulating intestinal microbiota in T2DM mice. Findings indicated that CRP is mainly linked by →6)α-D-Glcp-(1→ and CRP-H demonstrated greater efficacy than CRP-L in regulating hypoglycemic-related indicators such as serum high-density lipoprotein cholesterol (HDL-c) level.

View Article and Find Full Text PDF

Therapeutic effects of fumaric acid on proteomic expression and gut microbiota composition in Pacific white shrimp (Penaeus vannamei) infected with Ecytonucleospora hepatopenaei (EHP).

Fish Shellfish Immunol

January 2025

Vet Products Research & Innovation Center Co., Ltd. 141 Moo9, Thailand Science Park, Innovation Clusters (INC2) Tower D 11(th) floor, Room No. INCD1108-INCD1111 Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand.

Recently, microsporidiosis caused by a microsporidian [Ecytonucleospora (Enterocytozoon) hepatopenaei, EHP] has been found to seriously impact the global shrimp industry. The aim of this study was to evaluate the therapeutic effects of fumaric acid (FA) in EHP-infected Pacific white shrimp (Penaeus vannamei). In the first 2 groups, non-EHP-infected shrimp were fed FA-supplemented (10 g/kg diet) or normal feed (CM+ and CM-, respectively).

View Article and Find Full Text PDF

Can microbiota gut-brain axis reverse neurodegenerative disorders in human?

Ageing Res Rev

January 2025

Medical Science and Technology Innovation Center, Shandong Key Laboratory of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117, P R China; School of Medicine and Allied Health Sciences, University of The Gambia; Department of Medical Microbiology, Central South University Changsha, Hunan Provinces, China. Electronic address:

The trillions of microbial populations residing in the gut have recently shown that they can be used as a remedy for various diseases. The gut microbiota-brain-axis interface is one unique pathway that the microbiota demonstrates its medicinal value. This medicinal value is further seen when there is a decline in gut microbial diversity (dysbiosis).

View Article and Find Full Text PDF

The gut-lung axis: Protozoa join the party.

Cell

January 2025

Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia. Electronic address:

The gut microbiota is a powerful influencer of systemic immunity, with its impact on distal organs like the lungs garnering increasing attention. In this issue of Cell, Burrows et al. report that a gut protozoan plays a key role in shaping the immunological steady state of the lung.

View Article and Find Full Text PDF

Effects of tannic acid on growth performance, intestinal health, and tolerance in broiler chickens.

Poult Sci

December 2024

State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China. Electronic address:

This study investigated the optimal tannic acid dosage and assessed tolerance levels in broiler chickens. In experiment 1, 525 broilers were randomly divided into 5 treatment groups, the control group (CON group) and groups TA1 to TA4, corresponding to treatments of 0.025, 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!