The alarming pandemic situation of Coronavirus infectious disease COVID-19, caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has become a critical threat to public health. The unexpected outbreak and unrealistic progression of COVID-19 have generated an utmost need to realize promising therapeutic strategies to fight the pandemic. Drug repurposing-an efficient drug discovery technique from approved drugs is an emerging tactic to face the immediate global challenge. It offers a time-efficient and cost-effective way to find potential therapeutic agents for the disease. Artificial Intelligence-empowered deep learning models enable the rapid identification of potentially repurposable drug candidates against diseases. This study presents a deep learning ensemble model to prioritize clinically validated anti-viral drugs for their potential efficacy against SARS-CoV-2. The method integrates the similarities of drug chemical structures and virus genome sequences to generate feature vectors. The best combination of features is retrieved by the convolutional neural network in a deep learning manner. The extracted deep features are classified by the extreme gradient boosting classifier to infer potential virus-drug associations. The method could achieve an AUC of 0.8897 with 0.8571 prediction accuracy and 0.8394 sensitivity under the fivefold cross-validation. The experimental results and case studies demonstrate the suggested deep learning ensemble system yields competitive results compared with the state-of-the-art approaches. The top-ranked drugs are released for further wet-lab researches.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8492370 | PMC |
http://dx.doi.org/10.1016/j.asoc.2021.107945 | DOI Listing |
Int J Comput Assist Radiol Surg
January 2025
Medical Informatics, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany.
Purpose: Semantic segmentation and landmark detection are fundamental tasks of medical image processing, facilitating further analysis of anatomical objects. Although deep learning-based pixel-wise classification has set a new-state-of-the-art for segmentation, it falls short in landmark detection, a strength of shape-based approaches.
Methods: In this work, we propose a dense image-to-shape representation that enables the joint learning of landmarks and semantic segmentation by employing a fully convolutional architecture.
Neurosurg Rev
January 2025
Department of Neurosurgery, Mount Sinai Hospital, Icahn School of Medicine, New York City, NY, USA.
Currently, the World Health Organization (WHO) grade of meningiomas is determined based on the biopsy results. Therefore, accurate non-invasive preoperative grading could significantly improve treatment planning and patient outcomes. Considering recent advances in machine learning (ML) and deep learning (DL), this meta-analysis aimed to evaluate the performance of these models in predicting the WHO meningioma grade using imaging data.
View Article and Find Full Text PDFJ Imaging Inform Med
January 2025
Department of Anesthesiology, E-Da Cancer Hospital, I-Shou University, Kaohsiung, Taiwan.
Parkinson's disease (PD), a degenerative disorder of the central nervous system, is commonly diagnosed using functional medical imaging techniques such as single-photon emission computed tomography (SPECT). In this study, we utilized two SPECT data sets (n = 634 and n = 202) from different hospitals to develop a model capable of accurately predicting PD stages, a multiclass classification task. We used the entire three-dimensional (3D) brain images as input and experimented with various model architectures.
View Article and Find Full Text PDFJ Imaging Inform Med
January 2025
Computer Science Department, University of Geneva, Geneva, Switzerland.
Accurate wound segmentation is crucial for the precise diagnosis and treatment of various skin conditions through image analysis. In this paper, we introduce a novel dual attention U-Net model designed for precise wound segmentation. Our proposed architecture integrates two widely used deep learning models, VGG16 and U-Net, incorporating dual attention mechanisms to focus on relevant regions within the wound area.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!