Background: Duchenne and Becker muscular dystrophies (DMD/BMD) are the most common human dystrophinopathies with recessive X-linked inheritance. Dystrophin gene deletions and duplications are the most common mutations, followed by point mutations. The aim of this study is to characterize the mutational profile of the dystrophin gene in Colombian patients with DMD/BMD.
Material And Methods: Mutational profiling was determined in 69 affected patients using Sanger sequencing, next-generation sequencing (NGS) and/or multiplex ligation dependent-probes amplification (MLPA). Genetic variants were classified according to molecular consequence and new variants were determined through database and literature analysis.
Results: Mutational profile in affected patients revealed that large deletions/duplications analyzed by MLPA accounted for 72.5% of all genetic variations. By using Sanger sequencing or NGS, we identified point mutations in 15.9% and small deletions in 11.6% of the patients. New mutations were found, most of them were point mutations or small deletions (10.1%).
Conclusion: Our results described the genetic profile of the dystrophin gene in Colombian patients with DMD and contribute to efforts to identify molecular variants in Latin American populations. For our population, 18.8% of cases could be treated with FDA or MDA approved molecular therapies based on specific mutations. These data contribute to the establishment of appropriate genetic counseling and potential treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8493106 | PMC |
http://dx.doi.org/10.2147/TACG.S317721 | DOI Listing |
Biomedicines
November 2024
Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, 45122 Essen, Germany.
: X-linked dystrophinopathies are a group of neuromuscular diseases caused by pathogenic variants in the gene (MIM *300377). Duchenne muscular dystrophy (DMD; MIM #310200) is the most common inherited muscular dystrophy. : We screened datasets of 403 male, genetically confirmed X-linked dystrophinopathy patients and identified 13 pathogenic variants of the gene that have not been described in the literature thus far.
View Article and Find Full Text PDFMol Neurobiol
January 2025
Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-Cho, Kawaramachi Hirokoji, Kamigyo-Ku, Kyoto, 602-8566, Japan.
Duchenne/Becker muscular dystrophy (DMD/BMD) manifests progressive muscular dystrophy and non-progressive central nervous disorder. The neural disorder is possibly caused by abnormalities in the developmental period; however, basic research to understand the mechanisms remains underdeveloped. The responsible gene, Dmd (dystrophin), generates multiple products derived from several gene promoters.
View Article and Find Full Text PDFCardiol Young
January 2025
Loma Linda Children's Hospital, Department of Pediatric Cardiology, Loma Linda, CA, USA.
Dilated cardiomyopathy is an expected manifestation and common cause of death in patients with Duchenne muscular dystrophy. We present an unusually rapid progression of cardiomyopathy in a boy with Duchenne muscular dystrophy. Expanded genetic testing revealed a contiguous Xp21 deletion involving dystrophin and XK genes, responsible for Duchenne muscular dystrophy and McLeod neuroacanthocytosis syndrome, respectively, resulting in a more severe cardiac phenotype.
View Article and Find Full Text PDFSci Rep
January 2025
Sarepta Therapeutics, Inc., Cambridge, MA, USA.
Delandistrogene moxeparvovec is an rAAVrh74 vector-based gene transfer therapy that delivers a transgene encoding delandistrogene moxeparvovec micro-dystrophin, an engineered, functional form of dystrophin shown to stabilize or slow disease progression in DMD. It is approved in the US and in other select countries. Two serious adverse event cases of immune-mediated myositis (IMM) were reported in the phase Ib ENDEAVOR trial (NCT04626674).
View Article and Find Full Text PDFJ Cachexia Sarcopenia Muscle
February 2025
Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada.
Background: Duchenne muscular dystrophy (DMD) is a devastating disease characterized by progressive muscle wasting that leads to diminished lifespan. In addition to the inherent weakness of dystrophin-deficient muscle, the dysfunction of resident muscle stem cells (MuSC) significantly contributes to disease progression.
Methods: Using the mdx mouse model of DMD, we performed an in-depth characterization of disease progression and MuSC function in dystrophin-deficient skeletal muscle using immunohistology, isometric force measurements, transcriptomic analysis and transplantation assays.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!