Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Microfibers (MFs) and cadmium (Cd) are widely distributed in soil ecosystems, posing a potential threat to soil biota. To explore potential risks of single MFs and in combination with Cd (co-PMFs/Cd) to soil environment, we systematically investigated the effects of PMFs and co-PMFs/Cd treatments on physio-biochemical performance and metabolomic profile of lettuce (Lactuca sativa), as well as the rhizospheric bacterial communities. Our results showed that both PMFs and co-PMFs/Cd treatments adversely disturbed the plant shoot length, photosynthetic, and chlorophyll content. Co-PMFs/Cd specifically increased the activities of antioxidant enzymes. The metabolites in lettuce leaf were significantly altered by PMFs and co-PMFs/Cd treatments. A significant reduction in the relative abundance of amino acids sugar and sugar alcohols indicated the altered nitrogen and carbohydrates related metabolic pathways. Additionally, PMFs and co-PMFs/Cd treatments altered the structure of rhizospheric bacterial communities and caused significant changes in some key beneficial/functional bacteria involved in the C, and N cycles. The present study provides a novel insight into the potential effects of PMFs on plant and rhizosphere bacterial communities and highlights that PMFs can threaten the terrestrial ecosystem and should be further explored in future research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2021.127405 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!