The objective of this work was to investigate the chemical compositions of the essential oil (EO) extracted from by hydrodistillation and their insecticidal activities against , and . The chemical profile of the EO were analyzed by gas chromatography-mass spectrometry (GC-MS), and 20 compounds were identified which accounted for 88.03% of the total EO. Five major compounds identified in the EO were assayed against the three stored product insects. The EO showed strong contact toxicity to (LD = 18.01 μg/adult), (LD = 20.11 μg/adult) and (LD = 72.14 μg/cm). Among all compounds, geraniol showed the contact toxicity against and with LD values of 15.82 μg/adult and 26.64 μg/cm. The EO and its five chemical compounds also exhibited different level of potential repellence to the three stored product insects.

Download full-text PDF

Source
http://dx.doi.org/10.1080/14786419.2021.1983572DOI Listing

Publication Analysis

Top Keywords

contact toxicity
12
three stored
12
stored product
12
product insects
12
essential oil
8
compounds identified
8
toxicity repellence
4
repellence essential
4
oil major
4
major components
4

Similar Publications

The fabrication of dual-quantum dot heterostructures offers a promising strategy to enhance the environmental remediation performance of photocatalysts. Herein, a BiWO-based Z-scheme heterojunction was constructed by incorporating carbonized polymer dots (CPDs) and CdS quantum dots (QDs) via a microwave-assisted solvothermal method. The 1 wt% CPDs/CdS QDs/BiWO (CCBW-1) composite achieved optimal Cr(VI) removal, reaching 97.

View Article and Find Full Text PDF

The essential shortcoming of rapid passivation deactivation limits the efficient application of nano zero-valent iron (nZVI) in eliminating disinfection byproducts from drinking water. Copper-coated nano zero-valent iron (Cu-nZVI) bimetallic composites were synthesized to efficiently activate persulfate (PS) to remove nitrosopyrrolidine (NPYR). By introducing Cu-coated coatings, nZVI is protected from direct contact with PS; thus, Cu-nZVI appears to activate PS efficiently and stably without rapid deactivation.

View Article and Find Full Text PDF

(1) Background: The widespread use of nanoparticles (NPs) implies their inevitable contact with living organisms, including aquatic microorganisms, making it essential to understand the effects and consequences of this interaction. Understanding the adaptive responses and biochemical changes in microalgae and cyanobacteria under NP-induced stress is essential for developing biotechnological strategies that optimize biomolecule production while minimizing potential toxicity. This study aimed to evaluate the interactions between various potentially toxic nanoparticles and the cyanobacterial strain , focusing on the biological adaptations and biochemical mechanisms that enable the organism to withstand xenobiotic exposure.

View Article and Find Full Text PDF

Tuta absoluta is one of the most destructive pests of tomatoes. Chemical insecticides used to control this leafminer harm all organisms, increasing the risk to public health and the environment. Developing natural alternatives, such as bioinsecticides formulated from essential plant oils, is a key strategy to address this problem.

View Article and Find Full Text PDF

Complementary transistors are critical for circuits with compatible input/output signal dynamic range and polarity. Organic electronics offer biocompatibility and conformability; however, generation of complementary organic transistors requires introduction of separate materials with inadequate stability and potential for tissue toxicity, limiting their use in biomedical applications. Here, we discovered that introduction of source/drain contact asymmetry enables spatial control of de/doping and creation of single-material complementary organic transistors from a variety of conducting polymers of both carrier types.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!