Objective: To explore the feasibility of using the bidirectional local distance based medical similarity index (MSI) to evaluate automatic segmentation on medical images.

Methods: Taking the intermediate risk clinical target volume for nasopharyngeal carcinoma manually segmented by an experience radiation oncologist as region of interest, using Atlas-based and deep-learning-based methods to obtain automatic segmentation respectively, and calculated multiple MSI and Dice similarity coefficient (DSC) between manual segmentation and automatic segmentation. Then the difference between MSI and DSC was comparatively analyzed.

Results: DSC values for Atlas-based and deep-learning-based automatic segmentation were 0.73 and 0.84 respectively. MSI values for them varied between 0.29~0.78 and 0.44~0.91 under different inside-outside-level.

Conclusions: It is feasible to use MSI to evaluate the results of automatic segmentation. By setting the penalty coefficient, it can reflect phenomena such as under-delineation and over-delineation, and improve the sensitivity of medical image contour similarity evaluation.

Download full-text PDF

Source
http://dx.doi.org/10.3969/j.issn.1671-7104.2021.05.022DOI Listing

Publication Analysis

Top Keywords

automatic segmentation
20
msi evaluate
8
evaluate automatic
8
atlas-based deep-learning-based
8
segmentation
6
msi
5
automatic
5
[feasibility evaluating
4
evaluating result
4
result auto-segmentation
4

Similar Publications

The hippocampus is a small, yet intricate seahorse-shaped tiny structure located deep within the brain's medial temporal lobe. It is a crucial component of the limbic system, which is responsible for regulating emotions, memory, and spatial navigation. This research focuses on automatic hippocampus segmentation from Magnetic Resonance (MR) images of a human head with high accuracy and fewer false positive and false negative rates.

View Article and Find Full Text PDF

Automated Classification of Cardiac Arrhythmia using Short-Duration ECG Signals and Machine Learning.

Biomed Phys Eng Express

January 2025

Electronics and Communication Engineering, Rajiv Gandhi University, Rono Hills, Doimukh, ITANAGAR, Itanagar, Arunachal Pradesh, 791112, INDIA.

Accurate detection of cardiac arrhythmias is crucial for preventing premature deaths. The current study employs a dual-stage Discrete Wavelet Transform (DWT) and a median filter to eliminate noise from ECG signals. Subsequently, ECG signals are segmented, and QRS regions are extracted for further preprocessing.

View Article and Find Full Text PDF

Artificial Intelligence (AI) based auto-segmentation has demonstrated numerous benefits to clinical radiotherapy workflows. However, the rapidly changing regulatory, research, and market environment presents challenges around selecting and evaluating the most suitable solution. To support the clinical adoption of AI auto-segmentation systems, Selection Criteria recommendations were developed to enable a holistic evaluation of vendors, considering not only raw performance but associated risks uniquely related to the clinical deployment of AI.

View Article and Find Full Text PDF

Objective: To develop an automatic segmentation model to delineate the adnexal masses and construct a machine learning model to differentiate between low malignant risk and intermediate-high malignant risk of adnexal masses based on ovarian-adnexal reporting and data system (O-RADS).

Methods: A total of 663 ultrasound images of adnexal mass were collected and divided into two sets according to experienced radiologists: a low malignant risk set (n = 446) and an intermediate-high malignant risk set (n = 217). Deep learning segmentation models were trained and selected to automatically segment adnexal masses.

View Article and Find Full Text PDF

Cerebral microbleeds (CMBs) are small, hypointense hemosiderin deposits in the brain measuring 2-10 mm in diameter. As one of the important biomarkers of small vessel disease, they have been associated with various neurodegenerative and cerebrovascular diseases. Hence, automated detection, and subsequent extraction of clinically useful metrics (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!