Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This chapter discusses the fundamentals of gas chromatography (GC) to improve method development for metabolic profiling of complex biological samples. The selection of column geometry and phase ratio impacts analyte mass transfer, which must be carefully optimized for fast analysis. Stationary phase selection is critical to obtain baseline resolution of critical pairs, but such selection must consider important aspects of metabolomic protocols, such as derivatization and dependence of analyte identification on existing databases. Sample preparation methods are also addressed depending on the sample matrix, including liquid-liquid extraction and solid-phase microextraction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-3-030-77252-9_8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!