Human activities are changing the Arctic environment at an unprecedented rate resulting in rapid warming, freshening, sea ice retreat and ocean acidification of the Arctic Ocean. Trace gases such as nitrous oxide (NO) and methane (CH) play important roles in both the atmospheric reactivity and radiative budget of the Arctic and thus have a high potential to influence the region's climate. However, little is known about how these rapid physical and chemical changes will impact the emissions of major climate-relevant trace gases from the Arctic Ocean. The combined consequences of these stressors present a complex combination of environmental changes which might impact on trace gas production and their subsequent release to the Arctic atmosphere. Here we present our current understanding of nitrous oxide and methane cycling in the Arctic Ocean and its relevance for regional and global atmosphere and climate and offer our thoughts on how this might change over coming decades.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8692636PMC
http://dx.doi.org/10.1007/s13280-021-01633-8DOI Listing

Publication Analysis

Top Keywords

arctic ocean
16
nitrous oxide
12
oxide methane
12
changing arctic
8
trace gases
8
arctic
7
ocean
5
methane changing
4
ocean human
4
human activities
4

Similar Publications

Persistent pollutant exposure impacts metabolomic profiles in polar bears and ringed seals from the High Arctic and Hudson Bay, Canada.

Environ Res

January 2025

Environment and Climate Change Canada, Ecotoxicology and Wildlife Health Division, National Wildlife Research Centre, Carleton University, Ottawa, ON, K1A 0H3, Canada. Electronic address:

Metabolomics measures low molecular weight endogenous metabolites and changes linked to contaminant exposure in biota. Few studies have explored the relationship between metabolomics and contaminants in Arctic wildlife. We analyzed 239 endogenous metabolites and ∼150 persistent organic pollutants (POPs), including total mercury (THg), in the liver of polar bears and their ringed seal prey harvested from low Canadian Arctic (western Hudson Bay; WHB) and high Arctic (HA) locations during 2015-2016.

View Article and Find Full Text PDF

Arctic rivers may be the largest net sources of mercury (Hg) to the Arctic Ocean, yet riverine sources of Hg remain poorly characterized compared to atmospheric processes. This article reviews the current state of knowledge on Hg inputs to the Mackenzie River and Valley in Northern Canada from six point and non-point sources. Point sources include the locations of mines, fossil fuel extraction facilities, and retrogressive permafrost thaw slumps.

View Article and Find Full Text PDF

Substantial amounts of mercury (Hg) are projected to be released into Arctic watersheds as permafrost thaws amid warmer and wetter conditions. This may have far-reaching consequences because the highly toxic methylated form of Hg biomagnifies rapidly in ecosystems. However, understanding how climate change affects Hg dynamics in permafrost regions is limited due to the lack of long-term Arctic Hg records.

View Article and Find Full Text PDF

Studying complexes of cryptic or pseudocryptic species opens new horizons for the understanding of speciation processes, an important yet vague issue for the digeneans. We investigated a hemiuroidean trematode across a wide geographic range including the northern European seas (White, Barents, and Pechora), East Siberian Sea, and the Pacific Northwest (Sea of Okhotsk and Sea of Japan). The goals were to explore the genetic diversity within through mitochondrial ( and genes) and ribosomal (ITS1, ITS2, 28S rDNA) marker sequences, to study morphometry of maritae, and to revise the life cycle data.

View Article and Find Full Text PDF

Warming associated with climate change is driving poleward shifts in the marine habitat of anadromous Pacific salmon ( spp.). Yet the spawning locations for salmon to establish self-sustaining populations and the consequences for the ecosystem if they should do so are unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!