Irrigation enhances the connectivity between the surface and groundwater by facilitating the transport of energy sources and oxygen. When combined with fertilisers, the impact on groundwater microbial communities and their interactions with nitrogen cycling in aquifers is poorly understood. This study examines the impact of different landuses (irrigated and non-irrigated) on groundwater microbial communities. A total of 38 wells accessing shallow aquifers in three sub-catchments of the Murray Darling Basin, Australia, were sampled for water chemistry and microbial community structure using environmental DNA (eDNA) techniques. All sub-catchments showed evidence of intense irrigation and groundwater contamination with total nitrogen, nitrates and phosphorus concentrations often well above background, with total nitrogen concentrations up to 70 mg/L and nitrate concentration up to 18 mg/L. Across sub-catchments there was high microbial diversity, with differences in community structure and function between catchments and landuses. Of the 1100 operational taxonomic units (OTUs) recorded, 47 OTUs were common across catchments with species from Woesearchaeota, Nitrospirales, Nitrosopumilales and Acidobacter taxonomic groups contributing greatly to groundwater microbial communities. Within non-irrigated sites, groundwaters contained similar proportions of nitrifying and denitrifying capable taxa, whereas irrigated sites had significantly higher abundances of microbes with nitrifying rather than denitrifying capabilities. Microbial diversity was lower in irrigated sites in the Macquarie catchment. These results indicate that irrigated landuses impact microbial community structure and diversity within groundwaters and suggest that the ratios of denitrifying to nitrifying capable microbes as well as specific orders (e.g., Nitrososphaerales) may be useful to indicate long-term nitrogen contamination of groundwaters. Such research is important for understanding the biogeochemical processes that are key predictors of redox state and contamination of groundwater by N species and other compounds. This will help to predict human impacts on groundwater microbial structure, diversity, and ecosystem functions, aiding the long-term management groundwater resources.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2021.150870 | DOI Listing |
J Hazard Mater
January 2025
College of Water Sciences, Beijing Normal University, Beijing 100875, China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China; National University of Singapore, Department of Civil and Environmental Engineering, 1 Engineering Drive 2, 117576, Singapore. Electronic address:
The extensive use of the antimicrobial compound chlorhexidine (CHD) has emerged as a significant threat to both the ecological environment and human health. To address this concern, a photo-electrochemical cell-microbial fuel cell (PMFC) system was studied for CHD removal by incorporating, for the first time, the photocatalysts black phosphorus/carbon nitride (BPCN) and CuO into the bioanode and air cathode of an MFC, respectively. By combining electrochemical, macro-genomic, and intermediate product analyses, the underlying mechanisms of bioelectronic and photoelectronic synergies were elucidated.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Institute of Environmental Engineering and Building Installations, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland.
Riverbank filtration (RBF) has emerged as a crucial and functional water treatment method, particularly effective in improving surface water quality. This review is aimed at assessing the suitability of RBF in regions with limited access to clean water, such as Africa, where it has the potential to alleviate water scarcity and enhance water security. This review used various studies, highlighting the principles, applications, and advancements of RBF worldwide.
View Article and Find Full Text PDFSci Total Environ
January 2025
State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:
There is a major gap in the occurrence of mixed emerging contaminants, which hinders our efforts in exploring their behaviors and transport in environmental media, as well as their toxicity to human and ecosystem. This study assessed the occurrence and their correlations of mixed contamination by microplastics (MPs), per- and polyfluoroalkyl substances (PFASs), antibiotics, and antibiotic resistance genes (ARGs) in groundwater collected from a pharmaceutical and chemical industrial park. MPs, PFASs, antibiotics and ARGs were detected at all monitoring wells.
View Article and Find Full Text PDFMicroorganisms
November 2024
School of Earth System Science, Tianjin University, Tianjin 300072, China.
Contained arsenic (As) and unsafe brackish groundwater irrigation can lead to serious As pollution and increase the ecological risk in cultivated soils. However, little is known about how Fe oxides and microbes affect As migration during soil irrigation processes involving arsenic-contaminated brackish groundwater. In this study, the samples (porewater and soil) were collected through the dynamic soil column experiments to explore the As migration process and its effect factors during soil irrigation.
View Article and Find Full Text PDFWater Res
December 2024
State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
Dissolved organic matter (DOM) represents one of the most active elements in aquatic systems, whose fraction is engaged in chemical and biological reactions. However, fluorescence, molecular diversity and variations of DOM in groundwater systems with the alteration of surface water recharge remain unclear. Herein, Excitation-emission matrix (EEM) fluorescence spectroscopy and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) combined with principal component coefficients, parallel factor analyses (PARAFAC) with two‒dimensional correlation spectroscopy (2D-COS) were applied in this study.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!