Enhanced acidic resistance ability and catalytic properties of Bacillus 1,3-1,4-β-glucanases by sequence alignment and surface charge engineering.

Int J Biol Macromol

Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China. Electronic address:

Published: December 2021

High stability at acidic environment is required for 1,3-1,4-β-glucanase to function in biofuel, brewing and animal feed industries. In this study, a mesophilic β-glucanase from Bacillus terquilensis CGX 5-1 was rationally engineered through sequence alignment and surface charge engineering to improve its acidic resistance ability. Nineteen singly-site variants were constructed and Q1E, I133L and V134A variants showed better acidic stability without the compromise of catalytic property and thermostability. Furthermore, four multi-site variants were constructed and one double-site variant Q1E/I133L with better stability at acidic environment and higher catalytic property was obtained. The fluorescence spectroscopy and structural analysis showed that more surface negative charge, decreased exposure degree of residue No.1, shifted side chain direction of residue No.133 and the lower total and folding free energy might be the reason for the improvement of acidic stability of Q1E/I133L variant. The obtained Q1E/I133L variant has potential applications in industries.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2021.10.008DOI Listing

Publication Analysis

Top Keywords

acidic resistance
8
resistance ability
8
sequence alignment
8
alignment surface
8
surface charge
8
charge engineering
8
stability acidic
8
acidic environment
8
variants constructed
8
acidic stability
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!