Kidney organoid technology has led to a renaissance in kidney developmental biology. The complex underpinnings of mammalian kidney development have provided a framework for the generation of kidney cells and tissues from human pluripotent stem cells. Termed kidney organoids, these 3-dimensional structures contain kidney-specific cell types distributed similarly to in vivo architecture. The adult human kidney forms from the reciprocal induction of two disparate tissues, the metanephric mesenchyme (MM) and ureteric bud (UB), to form nephrons and collecting ducts, respectively. Although nephrons and collecting ducts are derived from the intermediate mesoderm (IM), their development deviates in time and space to impart distinctive inductive signaling for which separate differentiation protocols are required. Here we summarize the directed differentiation protocols which generate nephron kidney organoids and collecting duct kidney organoids, making note of similarities as much as differences. We discuss limitations of these present approaches and discuss future directions to improve kidney organoid technology, including a greater understanding of anterior IM and its derivatives to enable an improved differentiation protocol to collecting duct organoids for which historic and future developmental biology studies will be instrumental.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8983784 | PMC |
http://dx.doi.org/10.1016/j.semcdb.2021.09.017 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!