ι-Carrageenan nanocomposites for enhanced stability and oral bioavailability of curcumin.

Biomater Res

Department of Biotechnology, Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea.

Published: October 2021

Background: Carrageenan (CRN), a polygalactan consisting of 15 to 40% ester sulfate, is used in oral controlled-release technology due to its viscosity and large molecular weight. Curcumin (Cur) is a highly potent antioxidant and anti-inflammatory agent against various diseases, such as tumors, liver disease, rheumatism, and Alzheimer's disease. Although Cur shows excellent effects in the body, it has major problems, such as poor solubility and low bioavailability in water.

Method: Nanocomposites containing Cur were developed by emulsion technique. Cur@CRN was characterized through the viscosity measurement, size analysis, stability test, and loading efficiency. Antioxidant effects was analyzed with DPPH reagent, and anti-inflammatory effects was analyzed by NFkB/IkBr signaling pathway with wester blot. Cellular interaction was confirmed by flow cytometry and confocal images. Especially, permeability test was demonstrated in MDCK and Caco-2 monolayer cells.

Results: Cur@CRN enhanced stability, antioxidant, and anti-inflammatory effects in vitro, compared with other polymer nanocomposites. Sulfate groups (SO) in CRN are transported across cell membranes by anion exchangers of the SLC26 gene families. We confirmed Caco-2 cells expressed SLC26A2 receptors interacted with CRN, expect for Tween 80 and hydroxypropyl cellulose. In contrary, other cells did not interact with CRN due to non-expression of SLC26A2 receptors. Based on this, Cur@CRN showed 44-fold better permeability than free Cur in MDCK cell assay.

Conclusion: Enhanced intestinal permeability of Cur can be applied in various health care facilities with significant antioxidant and anti-inflammatory effects compared with nonformulated Cur. Since the CRN composed of nanocomposites has a high molecular weight, high viscosity, and sulfate groups, it will be a platform that can increase the bioavailability of various insoluble drugs as well as Cur.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8502325PMC
http://dx.doi.org/10.1186/s40824-021-00236-4DOI Listing

Publication Analysis

Top Keywords

antioxidant anti-inflammatory
12
anti-inflammatory effects
12
enhanced stability
8
molecular weight
8
effects analyzed
8
sulfate groups
8
slc26a2 receptors
8
cur
7
crn
5
effects
5

Similar Publications

Therapeutic Potential of Dimethyl Sulfoxide Subconjunctival Injection in a Diabetic Retinopathy Rat Model.

In Vivo

December 2024

Laboratory of Veterinary Ophthalmology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic for Korea

Background/aim: Diabetic retinopathy (DR), a complication of diabetes, causes damage to retinal blood vessels and can lead to vision impairment. Persistent high blood glucose levels contribute to this damage, and despite ongoing research, effective treatment options for DR remain limited. Dimethyl sulfoxide (DMSO) has shown anti-inflammatory and antioxidant properties in both in vivo and in vitro studies; however, its potential as an anti-inflammatory agent in the context of DR has not yet been explored.

View Article and Find Full Text PDF

Background/aim: Hydrogen therapy has demonstrated potential as an antioxidant and anti-inflammatory intervention, particularly in the management of chronic diseases such as chronic kidney disease (CKD) and autoimmune conditions. This case report presents the possible therapeutic benefits of molecular hydrogen capsule treatment in enhancing renal function and alleviating chronic fatigue in an elderly female with coronary artery disease (CAD), type 2 diabetes mellitus (DM) complicated by nephropathy, and systemic lupus erythematosus (SLE). The aim of this study was to investigate the efficacy of adjunctive hydrogen therapy in an elderly patient with multiple chronic comorbidities.

View Article and Find Full Text PDF

Gracilaria/Gracilariopsis lemaneiformis is an ecologically and economically valuable seaweed that has attracted attention for its unique flavour and rich nutritional content. Studies have shown that G. lemaneiformis contains a variety of chemical components, among which G.

View Article and Find Full Text PDF

Background: Bleomycin (BLM), an anticancer medication, can exacerbate pulmonary fibrosis by inducing oxidative stress and inflammation. Anti-inflammatory, anti-fibrotic, and antioxidant properties are exhibited by ganoderic acid A (GAA).

Aim: So, we aim to assess GAA's protective impact on lung fibrosis induced via BLM.

View Article and Find Full Text PDF

Background: Gut dysbiosis, chronic diseases, and microbial recurrent infections concerns have driven the researchers to explore phytochemicals from medicinal and food homologous plants to modulate gut microbiota, mitigate diseases, and inhibit pathogens. Gingerols have attracted attention as therapeutic agents due to their diverse biological activities like gut microbiome regulation, gastro-protective, anti-inflammatory, anti-microbial, and anti-oxidative effects.

Purpose: This review aimed to summarize the gingerols health-promoting potential, specifically focusing on the regulation of gut microbiome, attenuation of disease symptoms, mechanisms of action, and signaling pathways involved.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!