Background: Litchi chinensis Sonn. is an economically important fruit tree in tropical and subtropical regions. However, litchi functional genomics is severely hindered due to its recalcitrance to regeneration and stable transformation. Agrobacterium rhizogenes-mediated hairy root transgenic system provide an alternative to study functional genomics in woody plants. However, the hairy root transgenic system has not been established in litchi.
Results: In this study, we report a rapid and highly efficient A. rhizogenes-mediated co-transformation system in L. chinensis using Green Fluorescent Protein (GFP) gene as a marker. Both leaf discs and stem segments of L. chinensis cv. 'Fenhongguiwei' seedlings were able to induce transgenic hairy roots. The optimal procedure involved the use of stem segments as explants, infection by A. rhizogenes strain MSU440 at optical density (OD) of 0.7 for 10 min and co-cultivation for 3 days, with a co-transformation efficiency of 9.33%. Furthermore, the hairy root transgenic system was successfully used to validate the function of the key anthocyanin regulatory gene LcMYB1 in litchi. Over-expression of LcMYB1 produced red hairy roots, which accumulated higher contents of anthocyanins, proanthocyanins, and flavonols. Additionally, the genes involving in the flavonoid pathway were strongly activated in the red hairy roots.
Conclusion: We first established a rapid and efficient transformation system for the study of gene function in hairy roots of litchi using A. rhizogenes strain MSU440 by optimizing parameters. This hairy root transgenic system was effective for gene function analysis in litchi using the key anthocyanin regulator gene LcMYB1 as an example.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8502350 | PMC |
http://dx.doi.org/10.1186/s13007-021-00802-w | DOI Listing |
Molecules
December 2024
Navy Special Medical Centre, Second Military Medical University, Shanghai 200433, China.
, the valuable traditional Chinese medicinal plant, has been used in clinics for thousands of years. The water-soluble salvianolic acid compounds are bioactive substances used in treating many diseases. Gibberellins (GAs) are growth-promoting phytohormones that regulate plant growth and development.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Life Science, Northeast Agricultural University, Harbin 150030, China. Electronic address:
The 26S proteasome is a crucial protease complex responsible for degrading specific proteins to maintain cellular function during salt stress. Previous studies have shown that GmRPN11d, a subunit of the regulatory particle in soybean, is upregulated in response to short-term salt stress. This research discovered that GmRPN11d is localized in the nucleus and cytoplasm, with its expression increasing under high salinity and other stress conditions.
View Article and Find Full Text PDFFront Plant Sci
December 2024
United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Japan.
Hairy vetch ( Roth), a leguminous plant with nitrogen-fixing ability, is used as a cover crop and has the potential to suppress weeds and plant diseases. The microbial composition, particularly fungal endophytes, which may be related to the beneficial functions of this crop, has not been previously studied. In this study, we analyzed the diversity and function of culturable fungal endophytes associated with hairy vetch from eight locations across Japan.
View Article and Find Full Text PDFPlant Signal Behav
December 2025
School of Medical Technology, Chongqing Three Gorges Medical College, Chongqing, China.
The most damaging disease affecting citrus globally is Huanglongbing (HLB), primarily attributed to the infection by ' asiaticus' (Las). Based on comparative transcriptome data, two cellulose synthase (CESA) genes responsive to Las infection induction were screened, and one gene cloned with higher differential expression level was selected and named . we verified the interaction between CsCESA1 and citrus exopolysaccharide 2 (CsEPS2) proteins.
View Article and Find Full Text PDFPlanta
December 2024
Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Russian Academy of Sciences Far Eastern Branch, FGBUN FNC Bioraznoobrazia Nazemnoj Bioty Vostocnoj Azii Dal'nevostocnogo Otdelenia Rossijskoj Akademii Nauk, Vladivostok, 690022, Russia.
Long-term cultured calli may experience a biosynthetic shift due to the IAA-dependent expression of the rolA gene, which also affects ROS metabolism. The "hairy root" syndrome is caused by the root-inducing Ri-plasmid of Rhizobium rhizogenes, also known as Agrobacterium rhizogenes. The Ri-plasmid contains genes known as rol genes or root oncogenic loci, which promote root development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!