Mechanical metrics may show improved ability to predict osteoarthritis compared to T1rho mapping.

J Biomech

Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, United States; Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States; Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, United States. Electronic address:

Published: December 2021

Changes in cartilage structure and composition are commonly observed during the progression of osteoarthritis (OA). Importantly, quantitative magnetic resonance imaging (MRI) methods, such as T1rho relaxation imaging, can noninvasively provide in vivo metrics that reflect changes in cartilage composition and therefore have the potential for use in early OA detection. Changes in cartilage mechanical properties are also hallmarks of OA cartilage; thus, measurement of cartilage mechanical properties may also be beneficial for earlier OA detection. However, the relative predictive ability of compositional versus mechanical properties in detecting OA has yet to be determined. Therefore, we developed logistic regression models predicting OA status in an ex vivo environment using several mechanical and compositional metrics to assess which metrics most effectively predict OA status. Specifically, in this study the compositional metric analyzed was the T1rho relaxation time, while the mechanical metrics analyzed were the stiffness and recovery (defined as a measure of how quickly cartilage returns to its original shape after loading) of the cartilage. Cartilage recovery had the best predictive ability of OA status both alone and in a multivariate model including the T1rho relaxation time. These findings highlight the potential of cartilage recovery as a non-invasive marker of in vivo cartilage health and motivate future investigation of this metric clinically.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8744537PMC
http://dx.doi.org/10.1016/j.jbiomech.2021.110771DOI Listing

Publication Analysis

Top Keywords

changes cartilage
12
t1rho relaxation
12
mechanical properties
12
cartilage
10
mechanical metrics
8
cartilage mechanical
8
predictive ability
8
relaxation time
8
cartilage recovery
8
mechanical
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!