Chondrocytes as mechano-sensitive cells can sense and respond to mechanical stress throughout life. In chondrocytes, changes of structure and morphology in the cytoskeleton have been potentially involved in various mechano-transductions such as stretch-activated ion channels, integrins, and intracellular organelles. However, the mechanism of cytoskeleton rearrangement in response to mechanical loading and unloading remains unclear. In this study, we exposed chondrocytes to a physiological range of cyclic tensile strain as mechanical loading or to simulated microgravity by 3D-clinostat that produces an unloading environment. Based on microarray profiling, we focused on Fat1 that implicated in the formation and rearrangement of actin fibers. Next, we examined the relationship between the distribution of Fat1 proteins and actin fibers after cyclic tensile strain and microgravity. As a result, Fat1 proteins did not colocalize with actin stress fibers after cyclic tensile strain, but accumulated near the cell membrane and colocalized with cortical actin fibers after microgravity. Our findings indicate that Fat1 may mediate the rearrangement of cortical actin fibers induced by mechanical unloading.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiomech.2021.110774DOI Listing

Publication Analysis

Top Keywords

cyclic tensile
16
tensile strain
16
actin fibers
16
strain microgravity
8
mechanical loading
8
fat1 proteins
8
fibers cyclic
8
cortical actin
8
actin
6
fat1
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!