Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Several studies have indicated metabolic function disruption effects of bisphenol analogues through peroxisome proliferator-activated receptor (PPAR) alpha and gamma pathways. In the present study, we found for the first time that PPARβ/δ might be a novel cellular target of bisphenol analogues. By using the fluorescence competitive binding assay, we found seven bisphenol analogues could bind to PPARβ/δ directly, among which tetrabromobisphenol A (TBBPA, 18.38-fold) and tetrachlorobisphenol A (TCBPA, 12.06-fold) exhibited stronger binding affinity than bisphenol A (BPA). In PPARβ/δ-mediated luciferase reporter gene assay, the seven bisphenol analogues showed transcriptional activity toward PPARβ/δ. Bisphenol AF (BPAF), bisphenol F (BPF) and bisphenol B (BPB) even showed higher transcriptional activity than BPA, while TBBPA and TCBPA showed comparable activity with BPA. Moreover, in human liver HL-7702 cells, the bisphenol analogues promoted the expression of two PPARβ/δ target genes PDK4 and ANGPTL4. Molecular docking simulation indicated the binding potency of bisphenol analogues to PPARβ/δ might depend on halogenation and hydrophobicity and the transcriptional activity might depend on their binding affinity and hydrogen bond interactions. Overall, the PPARβ/δ pathway may provide a new mechanism for the metabolic function disruption of bisphenol analogues, and TBBPA and TCBPA might exert higher metabolic disruption effects than BPA via PPARβ/δ pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2021.112849 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!