Hypothesis: Transparent superhydrophilic coatings are very promising in various scenarios. Appropriate fabrication of colloid coatings with superhydrophilicity both in air and under oil would enlarge their application potential in anti-oil fouling and facilitate anti-fogging of transparent surfaces.
Experiments: The Barite colloid was obtained from a one-step precipitation method and was transferred onto glasses to prepare transparent coatings with different thicknesses simply by dip-coating. Then, the impact of thickness on wettability and property was studied through the investigation of wettability in various phase, anti-crude oil fouling performance and anti-fogging ability.
Findings: Similar surface morphology and roughness of these coatings were achieved and all the coated surfaces showed ultra-hydrophilicity both in air and under oil. Moreover, the hydrophilicity in air and under oil was found to deteriorate with the decrease of coatings' thickness and dual superhydrophilicity could be achieved on thick coatings. More importantly, excellent anti-crude oil fouling property and durable anti-fogging ability were realized on these transparent coatings with dual superhydrophilicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2021.09.178 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!