Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The Waddington epigenetic landscape has become an iconic representation of the cellular differentiation process. Recent single-cell transcriptomic data provide new opportunities for quantifying this originally conceptual tool, offering insight into the gene regulatory networks underlying cellular development. While many methods for constructing the landscape have been proposed, by far the most commonly employed approach is based on computing the landscape as the negative logarithm of the steady-state probability distribution. Here, we use simple models to highlight the complexities and limitations that arise when reconstructing the potential landscape in the presence of stochastic fluctuations. We consider how the landscape changes in accordance with different stochastic systems and show that it is the subtle interplay between the deterministic and stochastic components of the system that ultimately shapes the landscape. We further discuss how the presence of noise has important implications for the identifiability of the regulatory dynamics from experimental data. A record of this paper's transparent peer review process is included in the supplemental information.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cels.2021.09.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!