Generation of Drosophila Heparan Sulfate Mutant Cell Lines from Existing Fly Strains.

Methods Mol Biol

Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA.

Published: January 2022

Genetic studies using a model organism, Drosophila melanogaster, have been contributing to elucidating the in vivo functions of heparan sulfate proteoglycans (HSPGs). On the other hand, biochemical analysis of Drosophila glycosaminoglycans (GAGs) has been limited, mainly due to the insufficient amount of the material obtained from the animal. Recently, a novel in vitro system has been developed by establishing mutant cell lines for heparan sulfate (HS)-modifying enzyme genes. Metabolic radiolabeling of GAGs allows us to assess uncharacterized features of Drosophila GAGs and the effects of the mutations on HS structures and function. The novel in vitro system will provide us with a direct link between detailed structural information of Drosophila HS and a wealth of knowledge on biological phenotypic data obtained over the last two decades using this animal model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8930275PMC
http://dx.doi.org/10.1007/978-1-0716-1398-6_47DOI Listing

Publication Analysis

Top Keywords

heparan sulfate
12
mutant cell
8
cell lines
8
novel vitro
8
vitro system
8
generation drosophila
4
drosophila heparan
4
sulfate mutant
4
lines existing
4
existing fly
4

Similar Publications

Advances in the Pathogenesis of Hereditary Angioedema.

Zhongguo Yi Xue Ke Xue Yuan Xue Bao

December 2024

Department of Allergy, PUMC Hospital,CAMS and PUMC,Beijing 100730,China.

Hereditary angioedema (HAE) is a rare,unpredictable,autosomal dominant disorder characterized by recurrent swelling in subcutaneous and submucosal tissue.In recent years,the pathophysiology and pathogenesis of HAE have been continuously studied and elucidated.In addition to the genes encoding complement 1 esterase inhibitors,new pathogenic variants have been identified in the genes encoding coagulation factor Ⅻ,plasminogen,angiopoietin-1,kininogen,heparan sulfate 3-O-sulfotransferase 6,and myoferlin in HAE.

View Article and Find Full Text PDF

Heparanase 2 Modulation Inhibits HSV-2 Replication by Regulating Heparan Sulfate.

Viruses

November 2024

Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA.

The host enzyme heparanase (HPSE) facilitates the release of herpes simplex virus type 2 (HSV-2) from target cells by cleaving the viral attachment receptor heparan sulfate (HS) from infected cell surfaces. HPSE 2, an isoform of HPSE, binds to but does not possess the enzymatic activity needed to cleave cell surface HS. Our study demonstrates that HSV-2 infection significantly elevates HPSE 2 protein levels, impacting two distinct stages of viral replication.

View Article and Find Full Text PDF
Article Synopsis
  • The study explored how extracellular histone H4 contributes to acute respiratory distress syndrome (ARDS) triggered by oleic acid (OA) in mice.
  • The research found that levels of histone H4 increased significantly after OA injection, correlating with the severity of ARDS, and that pre-treatment with histone H4 worsened lung edema and mortality.
  • Histone H4 activated endothelial cells through mechanisms involving heparan sulfate degradation and certain receptors, leading to inflammation and thrombus formation in the lungs.
View Article and Find Full Text PDF

Wnt/β-catenin signaling directs animal development and tissue renewal in a tightly controlled, cell- and tissue-specific manner. In the mammalian central nervous system, the atypical ligand Norrin controls angiogenesis and maintenance of the blood-brain barrier and blood-retina barrier through the Wnt/β-catenin pathway. Like Wnt, Norrin activates signaling by binding and heterodimerizing the receptors Frizzled (Fzd) and low-density lipoprotein receptor-related protein 5 or 6 (LRP5/6), leading to membrane recruitment of the intracellular transducer Dishevelled (Dvl) and ultimately stabilizing the transcriptional coactivator β-catenin.

View Article and Find Full Text PDF
Article Synopsis
  • Heparanase is a key enzyme in the breakdown of heparan sulfate, contributing to tumor growth and metastasis, making it a target for cancer treatments.
  • Researchers synthesized specific trisaccharides and a tetrasaccharide that inhibit heparanase activity, focusing on glycol-split versions as potential inhibitors.
  • Studies using STD NMR and molecular docking revealed that these glycol-split trisaccharides had stronger binding and inhibitory effects against heparanase compared to their intact forms, providing insight into their mechanisms.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!