Background: Nitric oxide (NO) and reactive oxygen species (ROS) play an important role in the pathology of human osteoarthritis (OA). Ankylosing spondylitis (AS) and atypical OA have similar clinical manifestations and often require differential diagnosis. The mechanism is however not totally clear yet. This study aims to investigate the effects of excessive NO-ROS in OA patients and the effects of extracellular signal-regulated kinases (ERK) pathway in NO-induced apoptosis of chondrocytes during OA progress.
Methods And Results: Serum samples from OA or AS as pathological control patients and healthy controls were collected for NO and related chemical measurements. The rabbit articular chondrocytes were cultured in vitro, and NO was applied by Sodium Nitroprusside (SNP) in culture medium to mimic OA condition in patients. The level of SNP-evoked chondrocyte apoptosis with or without PD98059 (ERK-specific inhibitor) was evaluated by TUNEL assay, Annexin V flow cytometry and Western blotting. The activity and mRNA expression of caspase-3 in chondrocytes were measured by assay kits and RT-PCR. The levels of NO and malondialdehyde (MDA) in serum were significantly higher in OA patients, while only MDA was significantly higher in AS patients. However, the level of superoxide dismutase (SOD) was lower in both OA and AS patients. SNP induced chondrocyte apoptosis was enhanced by PD98059 with increased protein expression and functional activity of caspase-3.
Conclusions: The increase in nitric oxide occurs specifically in OA patients. ERK pathway may play a protective role on the NO-induced chondrocyte apoptosis, and inhibition of ERK pathway enhances the NO-induced apoptosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11033-021-06731-0 | DOI Listing |
Adv Rheumatol
December 2024
Department of Rehabilitation Medicine, Wuhan No.1 Hospital, 215 Zhongshan Avenue, Qiaokou District, Wuhan, Hubei, 430022, China.
Background: Osteoarthritis (OA) is a common degenerative joint disease. Circular RNA Phosphodiesterase 1 C (circ-PDE1C, hsa_circ_0134111) has participated in the IL-1β-induced chondrocyte damages. The objective of our study was to explore the molecular mechanism of circ-PDE1C.
View Article and Find Full Text PDFClin Transl Med
January 2025
Department of Gynecology, West China Second Hospital, Sichuan University, Chengdu, China.
Background: Hypoxia can affect the occurrence and development of inflammation in humans, but its effects on the disease progression of osteoarthritis (OA) remain unclear. Synovial macrophages play an essential role in the progression of arthritis. Specifically, the activation of the NOD-like receptor family pyrin domain containing 3 (NLRP3) in macrophages induces the secretion of a series of inflammatory factors, accelerating the progression of OA.
View Article and Find Full Text PDFEcotoxicol Environ Saf
December 2024
The Affiliated Stomatological Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Provincial Key Laboratory of Oral Diseases, Jiangxi Provincial Clinical Research Center for Oral Diseases, Nanchang, Jiangxi 330006, PR China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Clinical Research Center of Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi 343009, PR China; The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China. Electronic address:
Dipropyl phthalate (DPRP), a plasticizer commonly utilized in the plastics industry, has been identified in food and the environment and has the potential to present a hazard to human health and the environment. In this study, the first comprehensive evaluation of DPRP-induced craniofacial chondrogenic defects was conducted using a zebrafish model. Zebrafish embryos were exposed to 1, 2, and 4 mg/L DPRP from 6 to 96 h post-fertilization.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
December 2024
Spinal Surgery, Zhejiang Chinese Medical University Affiliated Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang, China.
JCI Insight
December 2024
Institute of Musculoskeletal Medicine, University Hospital Münster, Münster, Germany.
Transient receptor potential channel 1 (TRPC1) is a widely expressed mechanosensitive ion channel located within the endoplasmic reticulum membrane, crucial for refilling depleted internal calcium stores during activation of calcium-dependent signaling pathways. Here, we demonstrate that TRPC1 activity is protective within cartilage homeostasis in the prevention of cellular senescence associated cartilage breakdown during mechanical and inflammatory challenge. We reveal that TRPC1 loss is associated with early stages of osteoarthritis (OA) and plays a non-redundant role in calcium signaling in chondrocytes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!