Damage to proximal tubules due to exposure to toxicants can lead to conditions such as acute kidney injury (AKI), chronic kidney disease (CKD) and ultimately end-stage renal failure (ESRF). Studies have shown that kidney proximal epithelial cells can regenerate particularly after acute injury. In the previous study, we utilized an immortalized in vitro model of human renal proximal tubule epithelial cells, RPTEC/TERT1, to isolate HRTPT cell line that co-expresses stem cell markers CD133 and CD24, and HREC24T cell line that expresses only CD24. HRTPT cells showed most of the key characteristics of stem/progenitor cells; however, HREC24T cells did not show any of these characteristics. The goal of this study was to further characterize and understand the global gene expression differences, upregulated pathways and gene interaction using scRNA-seq in HRTPT cells. Affymetrix microarray analysis identified common gene sets and pathways specific to HRTPT and HREC24T cells analysed using DAVID, Reactome and Ingenuity software. Gene sets of HRTPT cells, in comparison with publicly available data set for CD133+ infant kidney, urine-derived renal progenitor cells and human kidney-derived epithelial proximal tubule cells showed substantial similarity in organization and interactions of the apical membrane. Single-cell analysis of HRTPT cells identified unique gene clusters associated with CD133 and the 92 common gene sets from three data sets. In conclusion, the gene expression analysis identified a unique gene set for HRTPT cells and narrowed the co-expressed gene set compared with other human renal-derived cell lines expressing CD133, which may provide deeper understanding in their role as progenitor/stem cells that participate in renal repair.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8581341 | PMC |
http://dx.doi.org/10.1111/jcmm.16976 | DOI Listing |
Int J Mol Sci
November 2024
Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Stop 9037, Grand Forks, ND 58203, USA.
Cisplatin (CisPt) is a widely used chemotherapeutic agent. However, its nephrotoxic effects pose significant risks, particularly for the development of acute kidney injury (AKI) and potential progression to chronic kidney disease (CKD). The present study investigates the impact of non-lethal exposure of CisPt to immortalized human renal epithelial precursor TERT cells (HRTPT cells) that co-express PROM1 and CD24, markers characteristic of renal progenitor cells.
View Article and Find Full Text PDFInt J Mol Sci
August 2023
Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA.
Kidney progenitor cells, although rare and dispersed, play a key role in the repair of renal tubules after acute kidney damage. However, understanding these cells has been challenging due to the limited access to primary renal tissues and the absence of immortalized cells to model kidney progenitors. Previously, our laboratory utilized the renal proximal tubular epithelial cell line, RPTEC/TERT1, and the flow cytometry technique to sort and establish a kidney progenitor cell model called Human Renal Tubular Precursor TERT (HRTPT) which expresses CD133 and CD24 and exhibits the characteristics of kidney progenitors, such as self-renewal capacity and multi-potential differentiation.
View Article and Find Full Text PDFJ Pers Med
March 2023
Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, 1301 N. Columbia Road, Stop 9037, Grand Forks, ND 58202, USA.
Studies have reported the presence of renal proximal tubule specific progenitor cells which co-express PROM1 and CD24 markers on the cell surface. The RPTEC/TERT cell line is a telomerase-immortalized proximal tubule cell line that expresses two populations of cells, one co-expressing PROM1 and CD24 and another expressing only CD24, identical to primary cultures of human proximal tubule cells (HPT). The RPTEC/TERT cell line was used by the authors to generate two new cell lines, HRTPT co-expressing PROM1 and CD24 and HREC24T expressing only CD24.
View Article and Find Full Text PDFInt J Mol Sci
March 2023
Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA.
The human kidney is known to possess renal progenitor cells (RPCs) that can assist in the repair of acute tubular injury. The RPCs are sparsely located as single cells throughout the kidney. We recently generated an immortalized human renal progenitor cell line (HRTPT) that co-expresses PROM1/CD24 and expresses features expected on RPCs.
View Article and Find Full Text PDFJ Cell Mol Med
November 2021
Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA.
Damage to proximal tubules due to exposure to toxicants can lead to conditions such as acute kidney injury (AKI), chronic kidney disease (CKD) and ultimately end-stage renal failure (ESRF). Studies have shown that kidney proximal epithelial cells can regenerate particularly after acute injury. In the previous study, we utilized an immortalized in vitro model of human renal proximal tubule epithelial cells, RPTEC/TERT1, to isolate HRTPT cell line that co-expresses stem cell markers CD133 and CD24, and HREC24T cell line that expresses only CD24.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!