Surface terminations of two-dimensional MXene (Ti C T ) considerably impact its physicochemical properties. Commonly used etching methods usually introduce -F surface terminations or metallic impurities in MXene. We present a new molten-salt-assisted electrochemical etching method to synthesize fluorine-free Ti C Cl . Using electrons as reaction agents, cathode reduction and anode etching can be spatially isolated; thus, no metallics are present in the Ti C Cl product. The surface terminations can be in situ modified from -Cl to -O and/or -S, which considerably shortens the modification steps and enriches the variety of surface terminations. The obtained -O-terminated Ti C T are excellent electrode materials for supercapacitors, exhibiting capacitances of 225 F g at 1.0 Ag , good rate performance (91.1 % at 10 Ag ), and excellent capacitance retention (100 % after 10000 charge/discharge cycles at 10 Ag ), which is superior to multi-layered Ti C T prepared by other etching methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202110640 | DOI Listing |
J Hand Surg Am
January 2025
Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Florida, Gainesville, FL.
Purpose: The branching pattern of the deep motor branch of the ulnar nerve (DBUN) in the hand is complex. The anatomy of the motor branch innervating the fourth lumbrical (4L), where paralysis results in a claw hand deformity after ulnar nerve injury, is not well defined. This cadaver study focused on mapping and defining anatomical landmarks in relation to the motor branch to the 4L.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
With the development of diamond technology, its application in the field of electronics has become a new research hotspot. Hydrogen-terminated diamond has the electrical properties of P-type conduction due to the formation of two-dimensional hole gas (2DHG) on its surface. However, due to various scattering mechanisms on the surface, its carrier mobility is limited to 50-200 cm/(Vs).
View Article and Find Full Text PDFJ Immunother Cancer
December 2024
Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California, USA
Background: Granzyme B (GrB) is a key effector molecule, delivered by cytotoxic T lymphocytes and natural killer cells during immune surveillance to induce cell death. Fusion proteins and immunoconjugates represent an innovative therapeutic approach to specifically deliver a deadly payload to target cells. Epithelial membrane protein-2 (EMP2) is highly expressed in invasive breast cancer (BC), including triple-negative BC (TNBC), and represents an attractive therapeutic target.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Departamento de Física Aplicada - Instituto de Ciencia de Materiales, Matter at High Pressure (MALTA) Consolider Team, Universidad de Valencia, Edificio de Investigación, C/Dr Moliner 50, Burjassot, 46100, Valencia, Spain.
The production of hydrogen (H) fuel through electrocatalysis is emerging as a sustainable alternative to conventional and environmentally harmful energy sources. However, the discovery of cost-effective and efficient materials for this purpose remains a significant challenge. In this study, we explore the potential of the transition-metal-substituted YNS MXene as a promising candidate for hydrogen production through the hydrogen evolution reaction (HER).
View Article and Find Full Text PDFCells
December 2024
Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA.
Podocytes express large-conductance Ca-activated K channels (BK channels) and at least two different pore-forming KCa1.1 subunit C-terminal splice variants, known as VEDEC and EMVYR, along with auxiliary β and γ subunits. Podocyte KCa1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!