Across plants and animals, genome size is often correlated with life-history traits: large genomes are correlated with larger seeds, slower development, larger body size and slower cell division. Among decapod crustaceans, caridean shrimps are among the most variable both in terms of genome size variation and life-history characteristics such as larval development mode and egg size, but the extent to which these traits are associated in a phylogenetic context is largely unknown. In this study, we examine correlations among egg size, larval development and genome size in two different genera of snapping shrimp, Alpheus and Synalpheus, using phylogenetically informed analyses. In both Alpheus and Synalpheus, egg size is strongly linked to larval development mode: species with abbreviated development had significantly larger eggs than species with extended larval development. We produced the first comprehensive dataset of genome size in Alpheus (n = 37 species) and demonstrated that genome size was strongly and positively correlated with egg size in both Alpheus and Synalpheus. Correlated trait evolution analyses showed that in Alpheus, changes in genome size were clearly dependent on egg size. In Synalpheus, evolutionary path analyses suggest that changes in development mode (from extended to abbreviated) drove increases in egg volume; larger eggs, in turn, resulted in larger genomes. These data suggest that variation in reproductive traits may underpin the high degree of variation in genome size seen in a wide variety of caridean shrimp groups more generally.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jeb.13945 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Institute of Science and Technology Austria, AT-3400 Klosterneuburg, Austria.
Biophysical constraints limit the specificity with which transcription factors (TFs) can target regulatory DNA. While individual nontarget binding events may be low affinity, the sheer number of such interactions could present a challenge for gene regulation by degrading its precision or possibly leading to an erroneous induction state. Chromatin can prevent nontarget binding by rendering DNA physically inaccessible to TFs, at the cost of energy-consuming remodeling orchestrated by pioneer factors (PFs).
View Article and Find Full Text PDFHum Reprod
January 2025
Institute of Genomics, Estonian Genome Centre, University of Tartu, Tartu, Estonia.
Study Question: Do polycystic ovary syndrome (PCOS), menstrual cycle phases, and ovulatory status affect reproductive tract (RT) microbiome profiles?
Summary Answer: We identified microbial features associated with menstrual cycle phases in the upper and lower RT microbiome, but only two specific differences in the upper RT according to PCOS status.
What Is Known Already: The vaginal and uterine microbiome profiles vary throughout the menstrual cycle. Studies have reported alterations in the vaginal microbiome among women diagnosed with PCOS.
Exposure to ambient particulate matter (PM) with an aerodynamic diameter of <10 μm (PM) is a well-established health hazard. There is increasing evidence that geogenic (Earth-derived) particles can induce adverse biological effects upon inhalation, though there is high variability in particle bioreactivity that is associated with particle source and physicochemical properties. In this study, we investigated physicochemical properties and biological reactivity of volcanic ash from the April 2021 eruption of La Soufrière volcano, St.
View Article and Find Full Text PDFGenetics
January 2025
Max Planck Research Group Behavioural Genomics, Max Planck Institute for Evolutionary Biology, August-Thienemann-Straße 2, 24306 Plön, Germany.
Multiple methods of demography inference are based on the ancestral recombination graph. This powerful approach uses observed mutations to model local genealogies changing along chromosomes by historical recombination events. However, inference of underlying genealogies is difficult in regions with high recombination rate relative to mutation rate due to the lack of mutations representing genealogies.
View Article and Find Full Text PDFPlant Dis
January 2025
Microbiology, Campus Universitário s/n, Viçosa, Minas Gerais, Brazil, 36570-000;
The Ralstonia solanacearum Species Complex (RSSC) is the most significant plant pathogen group with a wide host range. It is genetically related but displays distinct biological features, such as restrictive geography occurrence. The RSSC comprises three species: Ralstonia pseudosolanacearum (phylotype I and III), Ralstonia solanacearum (phylotype IIA and IIB), and Ralstonia syzygii (phylotype IV) (Fegan and Prior 2005).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!