Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The rapid rise in global temperature has adverse effects on rice productivity. The lack of eminent resources for heat stress alleviation is threatening the agricultural sector. Heat stress alleviation by endophytic plant growth-promoting bacteria (PGPB) can be a sustainable and eco-friendly approach. The present study was conducted to check the colonization of Brevibacterium linens RS16 producing ACC (1-aminocyclopropane-1-carboxylate) deaminase in the rice endosphere and to characterize its efficiency in enhancing stress tolerance. The ethylene emission pathway, reactive oxygen species (ROS) concentrations, proline accumulation, expression of glutathione S-transferase (GST), and small heat shock proteins (sHSPs) were monitored at two different levels of heat stress (40°C and 45°C). Bacterial inoculation decreased ethylene emission levels by 26.9% and 24.4% in rice plants exposed to 40°C and 45°C, respectively, compared with the non-inoculated plants. B. linens RS16 also enhanced the expression profiles of glutathione S-transferase. The collective effect of GST expression profiles and decrease in ethylene emission due to bacterial ACC deaminase activity subsequently resulted in a decrease in ROS concentrations. Additionally, HSP16 and HSP26 increased expression in heat-stressed plants inoculated with B. linens RS16 resulted in enhanced stress tolerance (i.e., lesser proline accumulation) than non-inoculated plants. Hence, this study demonstrates the bacteria-mediated tolerance against heat stress by regulating the ethylene emission pathway and upregulating antioxidant enzymes and heat shock proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ppl.13584 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!