The OpenFlexure Microscope is a 3D-printed, low-cost microscope capable of automated image acquisition through the use of a motorised translation stage and a Raspberry Pi imaging system. This automation has applications in research and healthcare, including in supporting the diagnosis of malaria in low-resource settings. The plasmodium parasites that cause malaria require high magnification imaging, which has a shallow depth of field, necessitating the development of an accurate and precise autofocus procedure. We present methods of identifying the focal plane of the microscope, and procedures for reliably acquiring a stack of focused images on a system affected by backlash and drift. We also present and assess a method to verify the success of autofocus during the scan. The speed, reliability and precision of each method are evaluated, and the limitations discussed in terms of the end users' requirements.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jmi.13064DOI Listing

Publication Analysis

Top Keywords

openflexure microscope
8
microscope
5
fast high-precision
4
high-precision autofocus
4
autofocus motorised
4
motorised microscope
4
microscope automating
4
automating blood
4
blood sample
4
sample imaging
4

Similar Publications

Multichannel, infinite-conjugate optical systems easily allow implementation of multiple image paths and imaging modes into a single microscope. Traditional optical alignment methods which rely on additional hardware are not always simple to implement, particularly in compact open-source microscope designs. We present here an alignment algorithm and process to position the lenses and cameras in a microscope using only image magnification measurements.

View Article and Find Full Text PDF

The OpenFlexure Microscope is an accessible, three-dimensional-printed robotic microscope, with sufficient image quality to resolve diagnostic features including parasites and cancerous cells. As access to lab-grade microscopes is a major challenge in global healthcare, the OpenFlexure Microscope has been developed to be manufactured, maintained and used in remote environments, supporting point-of-care diagnosis. The steps taken in transforming the hardware and software from an academic prototype towards an accepted medical device include addressing technical and social challenges, and are key for any innovation targeting improved effectiveness in low-resource healthcare.

View Article and Find Full Text PDF

Utilization of accessible resources in the fabrication of an affordable, portable, high-resolution, 3D printed, digital microscope for Philippine diagnostic applications.

PLOS Glob Public Health

November 2023

Research Faculty, Ateneo de Manila University School of Medicine and Public Health, Center for Research and Innovation, Pasig City, National Capital Region, Philippines.

Philippine clinical laboratory licensing requirements mandate that diagnostic microscopy for Tuberculosis (TB) sputum microscopy, urinalysis, pap smears, wet smears, an option for complete blood count, stool exams, and malaria thick and thin smears should be accessible and available in health facilities including primary care centers. However, access to these essential diagnostics is hampered by the lack of trained personnel, relatively high costs for supplies and equipment especially in rural and underserved areas. This served as motivation for our team to utilize accessible resources in the form of affordable 3D printers, available CAD software, and components to build our low-cost Openflexure microscope (OFM) prototype.

View Article and Find Full Text PDF

Making user interaction with laboratory equipment more convenient and intuitive should promote experimental work and help researchers to complete their tasks efficiently. The most common form of interaction in current instrumentation is either direct tactile, with buttons and knobs, or interfaced through a computer, using a mouse and keyboard. Scripting is another function typical of smart and automated laboratory equipment, yet users are currently required to learn bespoke programming languages and libraries for individual pieces of equipment.

View Article and Find Full Text PDF

Antibiotic susceptibility testing is vital to tackle the emergence and spread of antimicrobial resistance. Inexpensive digital CMOS cameras can be converted into portable digital microscopes using 3D printed x-y-z stages. Microscopic examination of bacterial motility can rapidly detect the response of microbes to antibiotics to determine susceptibility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!