Higher-order phosphatase-substrate contacts terminate the integrated stress response.

Nat Struct Mol Biol

Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK.

Published: October 2021

Many regulatory PPP1R subunits join few catalytic PP1c subunits to mediate phosphoserine and phosphothreonine dephosphorylation in metazoans. Regulatory subunits engage the surface of PP1c, locally affecting flexible access of the phosphopeptide to the active site. However, catalytic efficiency of holophosphatases towards their phosphoprotein substrates remains unexplained. Here we present a cryo-EM structure of the tripartite PP1c-PPP1R15A-G-actin holophosphatase that terminates signaling in the mammalian integrated stress response (ISR) in the pre-dephosphorylation complex with its substrate, translation initiation factor 2α (eIF2α). G-actin, whose essential role in eIF2α dephosphorylation is supported crystallographically, biochemically and genetically, aligns the catalytic and regulatory subunits, creating a composite surface that engages the N-terminal domain of eIF2α to position the distant phosphoserine-51 at the active site. Substrate residues that mediate affinity for the holophosphatase also make critical contacts with eIF2α kinases. Thus, a convergent process of higher-order substrate recognition specifies functionally antagonistic phosphorylation and dephosphorylation in the ISR.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8500838PMC
http://dx.doi.org/10.1038/s41594-021-00666-7DOI Listing

Publication Analysis

Top Keywords

integrated stress
8
stress response
8
regulatory subunits
8
active site
8
higher-order phosphatase-substrate
4
phosphatase-substrate contacts
4
contacts terminate
4
terminate integrated
4
response regulatory
4
regulatory ppp1r
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!