A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Novel chemotherapeutic agent FX-9 activates NF-κB signaling and induces G1 phase arrest by activating CDKN1A in a human prostate cancer cell line. | LitMetric

Background: The aminoisoquinoline FX-9 shows pro-apoptotic and antimitotic effects against lymphoblastic leukemia cells and prostate adenocarcinoma cells. In contrast, decreased cytotoxic effects against non-neoplastic blood cells, chondrocytes, and fibroblasts were observed. However, the actual FX-9 molecular mode of action is currently not fully understood.

Methods: In this study, microarray gene expression analysis comparing FX-9 exposed and unexposed prostate cancer cells (PC-3 representing castration-resistant prostate cancer), followed by pathway analysis and gene annotation to functional processes were performed. Immunocytochemistry staining was performed with selected targets.

Results: Expression analysis revealed 0.83% of 21,448 differential expressed genes (DEGs) after 6-h exposure of FX-9 and 0.68% DEGs after 12-h exposure thereof. Functional annotation showed that FX-9 primarily caused an activation of inflammatory response by non-canonical nuclear factor-kappa B (NF-κB) signaling. The 6-h samples showed activation of the cell cycle inhibitor CDKN1A which might be involved in the secondary response in 12-h samples. This secondary response predominantly consisted of cell cycle-related changes, with further activation of CDKN1A and inhibition of the transcription factor E2F1, including downstream target genes, resulting in G1-phase arrest. Matching our previous observations on cellular level senescence signaling pathways were also found enriched. To verify these results immunocytochemical staining of p21 Waf1/Cip1 (CDKN1A), E2F1 (E2F1), PAI-1 (SERPNE1), and NFkB2/NFkB p 100 (NFKB2) was performed. Increased expression of p21 Waf1/Cip1 and NFkB2/NFkB p 100 after 24-h exposure to FX-9 was shown. E2F1 and PAI-1 showed no increased expression.

Conclusions: FX-9 induced G1-phase arrest of PC-3 cells through activation of the cell cycle inhibitor CDKN1A, which was initiated by an inflammatory response of noncanonical NF-κB signaling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8501574PMC
http://dx.doi.org/10.1186/s12885-021-08836-yDOI Listing

Publication Analysis

Top Keywords

nf-κb signaling
12
prostate cancer
12
fx-9
8
expression analysis
8
exposure fx-9
8
inflammatory response
8
activation cell
8
cell cycle
8
cycle inhibitor
8
inhibitor cdkn1a
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!