AI Article Synopsis

  • The study presents a new method to estimate the reflection coefficient of ultrasonic waves from glial cells, which helps visualize acoustic impedance distribution.
  • It addresses limitations of traditional deconvolution techniques by using both frequency and time-frequency domain approaches to avoid signal artifacts.
  • The findings reveal that the nucleus is centrally located within the cell and has a lower acoustic impedance than the cytoskeleton, potentially aiding in cell monitoring for regenerative medicine and drug discovery.

Article Abstract

Herein, we propose a method to estimate the reflection coefficient of the ultrasonic wave transmitted onto an object and to display this with acoustic impedance distribution. The observation targets were glial cells, which have a rigid cytoskeleton and spread out well on a culture substrate. A reflection coefficient derived only from the cells was then obtained using a deconvolution process. In the conventional method, the deconvolution process that was performed only in the frequency domain would cause an error in the reconstructed signal, and it formed an artifact when the result was converted into the acoustic impedance image. To solve this problem, two types of deconvolution techniques were applied in either the full frequency or time-frequency domain. The results of both methods were then compared. Since the characteristic acoustic impedance is a physical property substantially equivalent to the bulk modulus, it can be considered that the internal elastic parameter is thus estimated. An analysis of the nucleus based on its position in the acoustic impedance image was then performed. The results indicated that the proposed time-frequency domain deconvolution method is able to maintain the structure of the cell, while the cell itself is free from unwanted artifacts. The nucleus was also estimated to be located toward the center of the cell, with lower acoustic impedance value than the cytoskeleton. The results of this study could contribute to establishing a method for monitoring the internal condition of cultured cells in regenerative medicine and drug discovery.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultras.2021.106601DOI Listing

Publication Analysis

Top Keywords

acoustic impedance
24
frequency domain
8
domain deconvolution
8
reflection coefficient
8
deconvolution process
8
impedance image
8
time-frequency domain
8
acoustic
6
impedance
6
deconvolution
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!