Mitomycin treatment induces pulmonary toxicity, and alveolar epithelial cell senescence is crucial in the pathogenesis of the latter. However, the mechanism by which mitomycin induces alveolar epithelial cell senescence has yet to be elucidated. In this work, different doses (37.5-300 nM) of mitomycin induced the senescence of human alveolar type II-like epithelial cells and enhanced the phosphorylation of GSK3β (S9). The GSK3β (S9A) mutant reversed the senescence of mitomycin-treated alveolar epithelial cells. Pharmacological inhibition and gene deletion of Akt1, a kinase that regulates the phosphorylation of GSK3β (S9), suppressed mitomycin-induced alveolar epithelial cell senescence. The knockdown of p53, a downstream effector of GSK3β and an important regulator of cell senescence, repressed mitomycin-induced alveolar epithelial cell senescence. Treatment with baicalein weakened the phosphorylation of GSK3β (S9) and alleviated the senescence of alveolar epithelial cells brought about by mitomycin treatment. GSK3β (S9) phosphorylation appears to be the first signal involved in the mitomycin-induced senescence of alveolar epithelial cells and may present a potential target for attenuating mitomycin-induced pulmonary toxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.toxlet.2021.09.015 | DOI Listing |
Int J Hyg Environ Health
January 2025
Institute of Environmental Assessment and Water Research - Spanish Research council (IDAEA-CSIC), Barcelona, 08034, Spain; Spanish Ministry of Ecological Transition, Pollution Prevention Unit, Pza. San Juan de la Cruz 10, 28071, Madrid, Spain.
Research on nanoparticle (NP) release and potential exposure can be assessed through experimental field campaigns, laboratory simulations, and prediction models. However, risk assessment models are typically designed for manufactured NP (MNP) and have not been adapted for incidental NP (INP) properties. A notable research gap is identifying NP sources and their chemical, physical, and toxicological properties, especially in real-world settings.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Lung Biology, Department of Experimental Medical Sciences, Lund University, 221 84 Lund, Sweden.
Particulate matter (PM) is a major component of ambient air pollution. PM exposure is linked to numerous adverse health effects, including chronic lung diseases. Air quality guidelines designed to regulate levels of ambient PM are currently based on the mass concentration of different particle sizes, independent of their origin and chemical composition.
View Article and Find Full Text PDFBiomolecules
January 2025
Department of Neonatology, Children's Hospital, Capital Institute of Pediatrics, Beijing 100020, China.
Disrupted neonatal lung alveologenesis often leads to bronchopulmonary dysplasia (BPD), the most common chronic lung disease in children. The inhibition of type 2 alveolar (AT2) cell proliferation plays an important role in the arrest of alveologenesis. However, the mechanism of AT2 cell proliferation retardation in BPD is still not fully elucidated.
View Article and Find Full Text PDFAnn Card Anaesth
January 2025
All India Institute of Medical Sciences, Raipur, Chhattisgarh, India.
Pulmonary alveolar proteinosis (PAP) is a rare pulmonary pathology characterized by the accumulation of surfactant within type II alveolar epithelial cells. Whole lung lavage is the standard treatment for pulmonary alveolar proteinosis involving a large volume of fluid is infused into one lung and subsequently retrieved while the other lung is remains ventilated. Fast-tracking a patient undergoing whole lung lavage requires vigilant monitoring of arterial blood gases, fluid status, and respiratory mechanics.
View Article and Find Full Text PDFStem Cell Res Ther
January 2025
Center of Emergency and Critical Medicine, Jinshan Hospital of Fudan University, Shanghai, People's Republic of China.
Background: Chemical-induced acute lung injury is characterized by impaired epithelial regenerative capacity, leading to acute pulmonary edema. Numerous studies have investigated the therapeutic potential of endogenous stem cells with particular emphasis on alveolar type 2 epithelial (AEC2) cells owing to their involvement in lung cell renewal. Sox9, a transcription factor known for its role in maintaining stem cell properties and guiding cell differentiation, marks a subset of AEC2 cells believed to contribute to epithelial repair.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!