Recently, we reported β-cleavage of the prion protein (PrP) in human ocular tissues. Here, we explored whether this is unique to the human eye, and its functional implications. A comparison of the cleavage pattern of PrP in human ocular tissues with common nocturnal and diurnal animals revealed mainly β-cleavage in humans, and mostly full-length PrP in animal retinas. Soluble FL PrP and N-terminal fragment (N2) released from β-cleavage was observed in the aqueous and vitreous humor (AH & VH). Expression of human PrP in ARPE-19 cells, a human retinal pigmented epithelial cell line, also showed β-cleaved PrP. Surprisingly, β-cleavage was not altered by a variety of insults, including oxidative stress, suggesting a unique role of this cleavage in the human eye. It is likely that β-cleaved C- or N-terminal fragments of PrP protect from various insults unique to the human eye. On the contrary, β-cleaved C-terminus of PrP is susceptible to conversion to the pathological PrP-scrapie form, and includes the binding sites for β1-integrin and amyloid-β, molecules implicated in several ocular disorders. Considering the species and tissue-specific cleavage of PrP, our data suggest re-evaluation of prion infectivity and other ocular disorders of the human eye conducted in mouse models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8608713PMC
http://dx.doi.org/10.1016/j.exer.2021.108787DOI Listing

Publication Analysis

Top Keywords

human eye
20
human ocular
12
ocular disorders
12
human
10
prp
9
β-cleavage prion
8
prion protein
8
prp human
8
ocular tissues
8
unique human
8

Similar Publications

Magnetic resonance imaging (MRI) is frequently used to monitor disease progression in multiple sclerosis (MS). This study aims to systematically evaluate the correlation between MRI measures and histopathological changes, including demyelination, axonal loss, and gliosis, in the central nervous system of MS patients. We systematically reviewed post-mortem histological studies evaluating myelin density, axonal loss, and gliosis using quantitative imaging in MS.

View Article and Find Full Text PDF

Nature offers unique examples that help humans produce artificial systems which mimic specific functions of living organisms and provide solutions to complex technical problems of the modern world. For example, the development of 3D micro-nanostructures that mimic nocturnal insect eyes (optimized for night vision), emerges as promising technology for detection in IR spectral region. Here, we report a proof of principle concerning the design and laser 3D printing of all ultrastructural details of nocturnal moth Grapholita Funebrana eyes, for potential use as microlens arrays for IR detection systems.

View Article and Find Full Text PDF

The question of what processes can take place without conscious awareness has generated extensive research. Yet there is still no consensus regarding the extent and scope of unconscious processing, and past research abounds with conflicting results. A possible reason for this lack of consensus is the diversity of methods in the field, as the methodological choices might influence the results.

View Article and Find Full Text PDF

Multi scale multi attention network for blood vessel segmentation in fundus images.

Sci Rep

January 2025

Department of Data Science and Artificial Intelligence, Sunway University, 47500, Petaling Jaya, Selangor Darul Ehsan, Malaysia.

Precise segmentation of retinal vasculature is crucial for the early detection, diagnosis, and treatment of vision-threatening ailments. However, this task is challenging due to limited contextual information, variations in vessel thicknesses, the complexity of vessel structures, and the potential for confusion with lesions. In this paper, we introduce a novel approach, the MSMA Net model, which overcomes these challenges by replacing traditional convolution blocks and skip connections with an improved multi-scale squeeze and excitation block (MSSE Block) and Bottleneck residual paths (B-Res paths) with spatial attention blocks (SAB).

View Article and Find Full Text PDF

Optimal frequency bands for pupillography for maximal correlation with HRV.

Sci Rep

January 2025

Centre for Informatics and Systems of the University of Coimbra, Department of Informatics Engineering, University of Coimbra, Coimbra, Portugal.

Assessing cognitive load using pupillography frequency features presents a persistent challenge due to the lack of consensus on optimal frequency limits. This study aims to address this challenge by exploring pupillography frequency bands and seeking clarity in defining the most effective ranges for cognitive load assessment. From a controlled experiment involving 21 programmers performing software bug inspection, our study pinpoints the optimal low-frequency (0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!