Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: In 2020, the Singapore government rolled out the TraceTogether program, a digital system to facilitate contact tracing efforts in response to the COVID-19 pandemic. This system is available as a smartphone app and Bluetooth-enabled token to help identify close contacts. As of February 1, 2021, more than 80% of the population has either downloaded the mobile app or received the token in Singapore. Despite the high adoption rate of the TraceTogether mobile app and token (ie, device), it is crucial to understand the role of social and normative perceptions in uptake and usage by the public, given the collective efforts for contact tracing.
Objective: This study aimed to examine normative influences (descriptive and injunctive norms) on TraceTogether device use for contact tracing purposes, informed by the theory of normative social behavior, a theoretical framework to explain how perceived social norms are related to behaviors.
Methods: From January to February 2021, cross-sectional data were collected by a local research company through emailing their panel members who were (1) Singapore citizens or permanent residents aged 21 years or above; (2) able to read English; and (3) internet users with access to a personal email account. The study sample (n=1137) was restricted to those who had either downloaded the TraceTogether mobile app or received the token.
Results: Multivariate (linear and ordinal logistic) regression analyses were carried out to assess the relationships of the behavioral outcome variables (TraceTogether device usage and intention of TraceTogether device usage) with potential correlates, including perceived social norms, perceived community, and interpersonal communication. Multivariate regression analyses indicated that descriptive norms (unstandardized regression coefficient β=0.31, SE=0.05; P<.001) and injunctive norms (unstandardized regression coefficient β=0.16, SE=0.04; P<.001) were significantly positively associated with the intention to use the TraceTogether device. It was also found that descriptive norms were a significant correlate of TraceTogether device use frequency (adjusted odds ratio [aOR] 2.08, 95% CI 1.66-2.61; P<.001). Though not significantly related to TraceTogether device use frequency, injunctive norms moderated the relationship between descriptive norms and the outcome variable (aOR 1.12, 95% CI 1.03-1.21; P=.005).
Conclusions: This study provides useful implications for the design of effective intervention strategies to promote the uptake and usage of digital methods for contact tracing in a multiethnic Asian population. Our findings highlight that influence from social networks plays an important role in developing normative perceptions in relation to TraceTogether device use for contact tracing. To promote the uptake of the TraceTogether device and other preventive behaviors for COVID-19, it would be useful to devise norm-based interventions that address these normative perceptions by presenting high prevalence and approval of important social referents, such as family and close friends.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8592231 | PMC |
http://dx.doi.org/10.2196/30462 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!