A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Searching for the Radiative Decay of the Cosmic Neutrino Background with Line-Intensity Mapping. | LitMetric

Searching for the Radiative Decay of the Cosmic Neutrino Background with Line-Intensity Mapping.

Phys Rev Lett

Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA.

Published: September 2021

We study the possibility to use line-intensity mapping (LIM) to seek photons from the radiative decay of neutrinos in the cosmic neutrino background. The Standard Model prediction for the rate for these decays is extremely small, but it can be enhanced if new physics increases the neutrino electromagnetic moments. The decay photons will appear as an interloper of astrophysical spectral lines. We propose that the neutrino-decay line can be identified with anisotropies in LIM clustering and also with the voxel intensity distribution. Ongoing and future LIM experiments will have-depending on the neutrino hierarchy, transition, and experiment considered-a sensitivity to an effective electromagnetic transition moment ∼10^{-12}-10^{-8}(m_{i}c^{2}/0.1  eV)^{3/2}μ_{B}, where m_{i} is the mass of the decaying neutrino and μ_{B} is the Bohr magneton. This will be significantly more sensitive than cosmic microwave background spectral distortions, and it will be competitive with stellar cooling studies. As a by-product, we also report an analytic form of the one-point probability distribution function for neutrino-density fluctuations, obtained from the quijote simulations using symbolic regression.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.127.131102DOI Listing

Publication Analysis

Top Keywords

radiative decay
8
cosmic neutrino
8
neutrino background
8
line-intensity mapping
8
neutrino
5
searching radiative
4
decay cosmic
4
background line-intensity
4
mapping study
4
study possibility
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!