Giant Transport Anisotropy in ReS_{2} Revealed via Nanoscale Conducting-Path Control.

Phys Rev Lett

Department of Physics and Astronomy and Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0299, USA.

Published: September 2021

The low in-plane symmetry in layered 1T'-ReS_{2} results in strong band anisotropy, while its manifestation in the electronic properties is challenging to resolve due to the lack of effective approaches for controlling the local current path. In this work, we reveal the giant transport anisotropy in monolayer to four-layer ReS_{2} by creating directional conducting paths via nanoscale ferroelectric control. By reversing the polarization of a ferroelectric polymer top layer, we induce a conductivity switching ratio of >1.5×10^{8} in the ReS_{2} channel at 300 K. Characterizing the domain-defined conducting nanowires in an insulating background shows that the conductivity ratio between the directions along and perpendicular to the Re chain can exceed 5.5×10^{4} in monolayer ReS_{2}. Theoretical modeling points to the band origin of the transport anomaly and further reveals the emergence of a flat band in few-layer ReS_{2}. Our work paves the path for implementing highly anisotropic 2D materials for designing novel collective phenomena and electron lensing applications.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.127.136803DOI Listing

Publication Analysis

Top Keywords

giant transport
8
transport anisotropy
8
res_{2}
5
anisotropy res_{2}
4
res_{2} revealed
4
revealed nanoscale
4
nanoscale conducting-path
4
conducting-path control
4
control low
4
low in-plane
4

Similar Publications

Cells use 'active' energy-consuming motor and filament protein networks to control micrometre-scale transport and fluid flows. Biological active materials could be used in dynamically programmable devices that achieve spatial and temporal resolution that exceeds current microfluidic technologies. However, reconstituted motor-microtubule systems generate chaotic flows and cannot be directly harnessed for engineering applications.

View Article and Find Full Text PDF

Efficient magnetization control is a central issue in magnetism and spintronics. Particularly, there are increasing demands for manipulation of magnetic states in van der Waals (vdW) magnets with unconventional functionalities. However, the electrically induced phase transition between ferromagnetic-to-antiferromagnetic states without external magnetic field is yet to be demonstrated.

View Article and Find Full Text PDF

Vacuolization of hematopoietic precursors cells is a common future of several otherwise non-related clinical settings such as VEXAS, Chediak-Higashi syndrome and Danon disease. Although these disorders have a priori nothing to do with one other from a clinical point of view, all share abnormal vacuolization in different cell types including cells of the erythroid/myeloid lineage that is likely the consequence of moderate to drastic dysfunctions in the ubiquitin proteasome system and/or the endo-lysosomal pathway. Indeed, the genes affected in these three diseases UBA1, LYST or LAMP2 are known to be direct or indirect regulators of lysosome trafficking and function and/or of different modes of autophagy.

View Article and Find Full Text PDF

Sarcoplasmic/endoplasmic reticulum Ca-ATPase1 (SERCA1) is responsible for the clearance of cytosolic Ca in skeletal muscle. Due to its vital importance in regulating Ca homeostasis, the regulation of SERCA1 has been intensively studied. Small ankyrin 1 (sAnk1, Ank1.

View Article and Find Full Text PDF

A Structural Bioinformatics-Guided Study of Adenosine Triphosphate-Binding Cassette (ABC) Transporters and Their Substrates.

Membranes (Basel)

January 2025

Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester M13 9PT, UK.

Adenosine triphosphate-binding cassette (ABC) transporters form a ubiquitous superfamily of integral membrane proteins involved in the translocation of substrates across membranes. Human ABC transporters are closely linked to the pathogenesis of diseases such as cancer, metabolic diseases, and Alzheimer's disease. In this study, four ABC transporters were chosen based on (I) their importance in humans and (II) their score in a structural bioinformatics screen aimed at the prediction of crystallisation propensity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!