ConspectusDue to the spatial confinement, two-dimensional metal chalcogenides display an extraordinary optical response and carrier transport ability. Solution-based synthesis techniques such as colloidal hot injection and ion exchange provide a cost-effective way to fabricate such low-dimensional semiconducting nanocrystals. Over the years, developments in colloidal chemistry made it possible to synthesize various kinds of ultrathin colloidal nanoplatelets, including wurtzite- and zinc blende-type CdSe, rock salt PbS, black phosphorus-like SnX (X = S or Se), hexagonal copper sulfides, selenides, and even transition metal dichalcogenides like MoS. By altering experimental conditions and applying capping ligands with specific functional groups, it is possible to accurately tune the dimensionality, geometry, and consequently the optical properties of these colloidal metal chalcogenide crystals. Here, we review recent progress in the syntheses of two-dimensional colloidal metal chalcogenides (CMCs) and property characterizations based on optical spectroscopy or device-related measurements. The discoveries shine a light on their huge prospect for applications in areas such as photovoltaics, optoelectronics, and spintronics. In specific, the formation mechanisms of two-dimensional CMCs are discussed. The growth of colloidal nanocrystals into a two-dimensional shape is found to require either an intrinsic structural asymmetry or the assist of coexisted ligand molecules, which act as lamellar double-layer templates or "facet" the crystals via selective adsorption. By performing optical characterizations and especially ultrafast spectroscopic measurements on these two-dimensional CMCs, their unique electronic and excitonic features are revealed. A strong dependence of optical transition energies linked to both interband and inter-subband processes on the crystal geometry can be verified, highlighting a tremendous confinement effect in such nanocrystals. With the self-assembly of two-dimensional nanocrystals or coupling of different phases by growing heterostructures, unconventional optical performances such as charge transfer state generation or efficient Förster resonance energy transfer are discovered. The growth of large-scale individualized PbS and SnS nanosheets can be realized by facile hot injection techniques, which gives the opportunity to investigate the charge carrier behavior within a single nanocrystal. According to the results of the device-based measurements on these individualized crystals, structure asymmetry-induced anisotropic electrical responses and Rashba effects caused by a splitting of spin-resolved bands in the momentum space due to strong spin-orbit-coupling are demonstrated. It is foreseen that such geometry-controlled, large-scale two-dimensional CMCs can be the ideal materials used for designing high-efficiency photonics and electronics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.accounts.1c00209 | DOI Listing |
Dalton Trans
January 2025
State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China.
The design and synthesis of new mid-infrared functional crystals with novel structures and excellent properties is a hot topic in the materials science research field. Different from the traditional mid-far infrared crystal systems, such as chalcogenides and phosphides, a recently developed heavy metal oxyhalide, with a wide bandgap and transmittance range, is a very promising mid-infrared crystal material research system. Herein, the first case of a salt-inclusion compound in lead oxyhalides, CsPbOI (3PbOI·2CsI), has been synthesized by a high-temperature solution method.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Fort Hare Institute of Technology, University of Fort Hare, Private Bag X1314, Alice 5700, Eastern Cape, South Africa.
Perovskite solar cells (PSCs) are regarded as extremely efficient and have significant potential for upcoming photovoltaic technologies due to their excellent optoelectronic properties. However, a few obstacles, which include the instability and high costs of production of lead-based PSCs, hinder their commercialization. In this study, the performance of a solar cell with a configuration of FTO/CdS/BaZrS/HTL/Ir was optimized by varying the thickness of the perovskite layer, the hole transport layer, the temperature, the electron transport layer (ETL)'s defect density, the absorber defect density, the energy band, and the work function for back contact.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physics, Faculty of Science, Sohag University, Sohag, 82524, Egypt.
Synthesized 3,4-Diaminothieno[2,3-b]thiophene-2,5-dicarbohydrazide (DTT) Schiff base derivatives newly were synthesized by attaching with different aldehydes, deposited in thin film form by thermal evaporation technique, and characterized by UV-Visible-NIR spectroscopy, FT-IR, NMR, and elemental analysis. It is revealed that compound 4 has the highest absorption peak intensity at 586 nm. The allied absorption, dielectric, and dispersion parameters have been calculated and discussed.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2025
Chinese Academy of Sciences, 19 jia, Yuquan Road, Shijingshan District, Beijing, Beijing, 100049, CHINA.
Previous studies of the transition metal chalcogenide Ta2NiSe5 has identified two phase transitions occurring between 0-10GPa, involving the excitonic insulator-to-semiconductor transition at 1GPa and the semiconductor-to-semimetal transition at 3GPa. However, there is still a lack of in-depth research on the changes in its physical properties changes above 10GPa. In this study, Ta2NiSe5 were investigated under high-pressure conditions using high-pressure X-ray diffraction and high-pressure X-ray absorption experiments.
View Article and Find Full Text PDFNat Rev Chem
January 2025
School of Chemistry, University of Southampton, Southampton, UK.
Two-dimensional transition metal dichalcogenides (TMDCs) are highly anisotropic, layered semiconductors, with the general formula ME (M = metal, E = sulfur, selenium or tellurium). Much current research in this field focusses on TMDCs for catalysis and energy applications; they are also attracting great interest for next-generation transistor and optoelectronic devices. The latter high-tech applications place stringent requirements on the stoichiometry, crystallinity, morphology and electronic properties of monolayer and few-layer materials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!