A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionav2bh316cgcdekror54ceumpq5p80f3s): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

Ultrafast Thermal Imprinting of Plasmonic Hotspots. | LitMetric

Ultrafast Thermal Imprinting of Plasmonic Hotspots.

Adv Mater

Center for Nanophotonics, AMOLF, Science Park 104, Amsterdam, 1098 XG, The Netherlands.

Published: December 2021

Plasmonic photochemistry is driven by a rich collection of near-field, hot charge carrier, energy transfer, and thermal effects, most often accomplished by continuous wave illumination. Heat generation is usually considered undesirable, because noble metal nanoparticles heat up isotropically, losing the extreme energy confinement of the optical resonance. Here it is demonstrated through optical and heat-transfer modelling that the judicious choice of nanoreactor geometry and material enables the direct thermal imprint of plasmonic optical absorption hotspots onto the lattice with high fidelity. Transition metal nitrides (TMNs, e.g., TiN/HfN) embody the ideal material requirements, where ultrafast electron-phonon coupling prevents fast electronic heat dissipation and low thermal conductivity prolongs the heat confinement. The extreme energy confinement leads to unprecedented peak temperatures and internal heat gradients (>10 K nm ) that cannot be achieved using noble metals or any current heating method. TMN nanoreactors consequently yield up to ten thousand times more product in pulsed photothermal chemical conversion compared with noble metals (Ag, Au, Cu). These findings open up a completely unexplored realm of nano-photochemistry, where adjacent reaction centers experience substantially different temperatures for hundreds of picoseconds, long enough for bond breaking to occur.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11468741PMC
http://dx.doi.org/10.1002/adma.202105192DOI Listing

Publication Analysis

Top Keywords

extreme energy
8
energy confinement
8
noble metals
8
heat
5
ultrafast thermal
4
thermal imprinting
4
imprinting plasmonic
4
plasmonic hotspots
4
hotspots plasmonic
4
plasmonic photochemistry
4

Similar Publications

Climate change impacts on tomato production in high-tech soilless greenhouses in Türki̇ye.

BMC Plant Biol

March 2025

The Institute of Natural and Applied Sciences, Akdeniz University, Antalya, Konyaalti, 07070, Türkiye.

Climate change and its impact on agricultural production due to the occurrence of extreme weather events appear to be more imminent and severe than ever, presenting a global challenge that necessitates collective efforts to mitigate its effects.There have been many practical and modelling studies so far to estimate the extent of climate change and possible damages on agricultural production, suggesting that water availability may decrease by 50% and agricultural productivity between 10 and 30% in the coming years ahead. Though there have been many studies to estimate the possible level of damage by the climate change on the production of many agricultural crops, no study has been conducted on the greenhouse tomato production.

View Article and Find Full Text PDF

Climate extremes, such as hurricanes, combined with large-scale integration of environment-sensitive renewables, could exacerbate the risk of widespread power outages. We introduce a coupled climate-energy model for cascading power outages, which comprehensively captures the impacts of climate extremes on renewable generation, and transmission and distribution networks. The model is validated with the 2022 Puerto Rico catastrophic blackout during Hurricane Fiona - a unique system-wide blackout event with complete records of weather-induced outages.

View Article and Find Full Text PDF

Dietary timing enhances exercise by modulating fat-muscle crosstalk via adipocyte AMPKα2 signaling.

Cell Metab

March 2025

Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing 400038, China; Ministry of Education Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Chongqing 400038, China. Electronic address:

Feeding rhythms regulate exercise performance and muscle energy metabolism. However, the mechanisms regulating adipocyte functions remain unclear. Here, using multi-omics analyses, involving (phospho-)proteomics and lipidomics, we found that day-restricted feeding (DRF) regulates diurnal rhythms of the mitochondrial proteome, neutral lipidome, and nutrient-sensing pathways in mouse gonadal white adipose tissue (GWAT).

View Article and Find Full Text PDF

Despite agreements like the Paris Agreement, the world continues to face rising temperatures, extreme weather, and ecosystem disruptions, driven by continued use fossil fuel, agricultural emissions, and industrial activities and leading to greenhouse gas contributing to the serious fuelling climate change. Carbon capture and utilization (CCU), particularly thermochemical carbon dioxide (CO) splitting powered by thermal energy, offers a promising solution. Perovskite-based inorganic membranes, known for their high selectivity and permeability toward various gases, efficiency, and energy-saving potential, have attracted significant interest in gas separation, production and emerged as a leading technology for carbon capture and hydrogen purification.

View Article and Find Full Text PDF

Lasting impacts of rapid salinity change on physiological energetics of estuarine oysters (Crassostrea hongkongensis).

Mar Environ Res

March 2025

Fisheries College, Guangdong Ocean University, Zhanjiang, China; Oyster Industrial Technology Institute of Zhanjiang, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China. Electronic address:

The duration of rapid salinity change (RSC) prevailing in estuarine and coastal regions is increasing due to extreme climate and weather events, posing significant challenges to marine bivalves. The Hong Kong oyster (Crassostrea hongkongensis), an ecologically and economically important species in tropical estuarine ecosystems, has experienced increasing mass mortality during prolonged periods of RSC, yet little is known about underlying physiological processes. Here, we investigated how physiological energetics of C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!