Introduction: Patient eligibility for [Lu]Lu-PSMA therapy remains a challenge, with only 40-60% response rate when patient selection is done based on the lesion uptake (SUV) on [Ga]Ga-PSMA-PET/CT. Prediction of absorbed dose based on this pre-treatment scan could improve patient selection and help to individualize treatment by maximizing the absorbed dose to target lesions while adhering to the threshold doses for the organs at risk (kidneys, salivary glands, and liver).
Methods: Ten patients with low-volume hormone-sensitive prostate cancer received a pre-therapeutic [Ga]Ga-PSMA-11 PET/CT, followed by 3 GBq [Lu]Lu-PSMA-617 therapy. Intra-therapeutically, SPECT/CT was acquired at 1, 24, 48, 72, and 168 h. Absorbed dose in organs and lesions (n = 22) was determined according to the MIRD scheme. Absorbed dose prediction based on [Ga]Ga-PSMA-PET/CT was performed using tracer uptake at 1 h post-injection and the mean tissue effective half-life on SPECT. Predicted PET/actual SPECT absorbed dose ratios were determined for each target volume.
Results: PET/SPECT absorbed dose ratio was 1.01 ± 0.21, 1.10 ± 0.15, 1.20 ± 0.34, and 1.11 ± 0.29 for kidneys (using a 2.2 scaling factor), liver, submandibular, and parotid glands, respectively. While a large inter-patient variation in lesion kinetics was observed, PET/SPECT absorbed dose ratio was 1.3 ± 0.7 (range: 0.4-2.7, correlation coefficient r = 0.69, p < 0.01).
Conclusion: A single time point [Ga]Ga-PSMA-PET scan can be used to predict the absorbed dose of [Lu]Lu-PSMA therapy to organs, and (to a limited extent) to lesions. This strategy facilitates in treatment management and could increase the personalization of [Lu]Lu-PSMA therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8921092 | PMC |
http://dx.doi.org/10.1007/s00259-021-05538-2 | DOI Listing |
Sci Rep
January 2025
Botany and Microbiology Department, Faculty of Science, Al-Azhar University (Girl Branch), Cairo, Egypt.
Biosynthesized nanoparticles have a variety of applications, and microorganisms are considered one of the most ideal sources for the synthesis of green nanoparticles. Icerya aegyptiaca (Douglas) is a pest that has many generations per year and can affect 123 plant species from 49 families by absorbing sap from bark, forming honeydew, causing sooty mold, and attracting invasive ant species, leading to significant agricultural losses. The purpose of this work was to synthesize titanium dioxide nanoparticles (TiO-NPs) from marine actinobacteria and evaluate their insecticidal effects on Icerya aegyptiaca (Hemiptera: Monophlebidae), in addition to explaining their effects on protein electrophoresis analysis of SDS‒PAGE proteins from control and treated insects after 24, 72 and 120 h of exposure.
View Article and Find Full Text PDFMol Imaging Biol
January 2025
Yale PET Center, Yale School of Medicine, New Haven, USA.
Purpose: The sphingosine-1-phosphate receptor-1 (S1PR) is involved in regulating responses to neuroimmune stimuli. There is a need for S1PR-specific radioligands with clinically suitable brain pharmcokinetic properties to complement existing radiotracers. This work evaluated a promising S1PR radiotracer, [F]TZ4877, in nonhuman primates.
View Article and Find Full Text PDFJ Nucl Med
January 2025
Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
Dosimetry is integral to informed implementation of radiopharmaceutical therapies, enabling personalized treatment planning and ensuring patient safety by calculating absorbed doses to organs and tumors. As the therapeutic radiopharmaceutical field continues to expand, dosimetry software has emerged as a crucial tool for optimization of treatment efficacy. This review discusses key features and capabilities that current dosimetry software solutions have or should have in the future.
View Article and Find Full Text PDFNucl Med Commun
February 2025
Department of Radiology, Netherlands Cancer Institute- Antoni van Leeuwenhoekziekenhuis, Amsterdam, The Netherlands.
Background: Small-molecule biomacromolecules target tumor-specific antigens. They are employed as theranostic agents for imaging and treatment. Intravenous small-molecule radioligands exhibit rapid tumor uptake and excretion.
View Article and Find Full Text PDFMed J Malaysia
January 2025
Nanobiomedicine lab, Centre for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamilnadu, India.
Introduction: The biomedical potential of silver nanoparticles (Ag NPs) synthesized with Zingiber officinale and Ocimum gratissimum herbal formulation was investigated in this study. The study aims to reveal their applications in various biomedical fields. The study evaluates the antioxidant, thrombolytic, and antimicrobial potential of Zingiber officinale and Ocimum gratissimum herbal formulation-mediated Ag NPs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!