Background: Social media has become an established platform for individuals to discuss and debate various subjects, including vaccination. With growing conversations on the web and less than desired maternal vaccination uptake rates, these conversations could provide useful insights to inform future interventions. However, owing to the volume of web-based posts, manual annotation and analysis are difficult and time consuming. Automated processes for this type of analysis, such as natural language processing, have faced challenges in extracting complex stances such as attitudes toward vaccination from large amounts of text.
Objective: The aim of this study is to build upon recent advances in transposer-based machine learning methods and test whether transformer-based machine learning could be used as a tool to assess the stance expressed in social media posts toward vaccination during pregnancy.
Methods: A total of 16,604 tweets posted between November 1, 2018, and April 30, 2019, were selected using keyword searches related to maternal vaccination. After excluding irrelevant tweets, the remaining tweets were coded by 3 individual researchers into the categories Promotional, Discouraging, Ambiguous, and Neutral or No Stance. After creating a final data set of 2722 unique tweets, multiple machine learning techniques were trained on a part of this data set and then tested and compared with the human annotators.
Results: We found the accuracy of the machine learning techniques to be 81.8% (F score=0.78) compared with the agreed score among the 3 annotators. For comparison, the accuracies of the individual annotators compared with the final score were 83.3%, 77.9%, and 77.5%.
Conclusions: This study demonstrates that we are able to achieve close to the same accuracy in categorizing tweets using our machine learning models as could be expected from a single human coder. The potential to use this automated process, which is reliable and accurate, could free valuable time and resources for conducting this analysis, in addition to informing potentially effective and necessary interventions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8538052 | PMC |
http://dx.doi.org/10.2196/29584 | DOI Listing |
Elife
January 2025
Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.
One in ten women in their reproductive age suffer from polycystic ovary syndrome (PCOS) that, alongside subfertility and hyperandrogenism, typically presents with increased luteinizing hormone (LH) pulsatility. As such, it is suspected that the arcuate kisspeptin (ARN) neurons that represent the GnRH pulse generator are dysfunctional in PCOS. We used here in vivo GCaMP fiber photometry and other approaches to examine the behavior of the GnRH pulse generator in two mouse models of PCOS.
View Article and Find Full Text PDFDiabetes Technol Ther
January 2025
Children's Mercy Kansas City, Endocrinology, Kansas City, Missouri, USA.
To use electronic health record (EHR) data to develop a scalable and transferrable model to predict 6-month risk for diabetic ketoacidosis (DKA)-related hospitalization or emergency care in youth with type 1 diabetes (T1D). To achieve a sharable predictive model, we engineered features using EHR data mapped to the T1D Exchange Quality Improvement Collaborative's (T1DX-QI) data schema used by 60+ U.S.
View Article and Find Full Text PDFTransl Stroke Res
January 2025
Department of Neurosurgery, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China.
Spontaneous intracranial artery dissection (sIAD) is the leading cause of stroke in young individuals. Identifying high-risk sIAD cases that exhibit symptoms and are likely to progress is crucial for treatment decision-making. This study aimed to develop a model relying on circulating biomarkers to discriminate symptomatic sIADs.
View Article and Find Full Text PDFMed Biol Eng Comput
January 2025
Department of Biomedical Engineering, Indian Institute of Technology, Ropar, Punjab, India.
Blood pressure (BP) is one of the vital physiological parameters, and its measurement is done routinely for almost all patients who visit hospitals. Cuffless BP measurement has been of great research interest over the last few years. In this paper, we aim to establish a method for cuffless measurement of BP using ultrasound.
View Article and Find Full Text PDFInterdiscip Sci
January 2025
School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China.
Metabolism in vivo turns small molecules (e.g., drugs) into metabolites (new molecules), which brings unexpected safety issues in drug development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!