The "no reflow" phenomenon, where the coronary artery is patent after treatment of acute myocardial infarction (AMI) but tissue perfusion is not restored, is associated with worse outcome. The mechanism of no reflow is unknown. We hypothesized that pericytes contraction, in an attempt to maintain a constant capillary hydrostatic pressure during reduced coronary perfusion pressure, causes capillary constriction leading to no reflow and that this effect is mediated through the orphan receptor, GPR39, present in pericytes. We created AMI (coronary occlusion followed by reperfusion) in GPR39 knock out mice and littermate controls. In a separate set of experiments, we treated wild-type mice undergoing coronary occlusion with vehicle or VC43, a specific inhibitor of GPR39, before reperfusion. We found that no reflow zones were significantly smaller in the GPR39 knockouts compared with controls. Both no reflow and infarct size were also markedly smaller in animals treated with VC43 compared with vehicle. Immunohistochemistry revealed greater capillary density and larger capillary diameter at pericyte locations in the GPR39-knockout and VC43-treated mice compared with controls. We conclude that GPR39-mediated pericyte contraction during reduced coronary perfusion pressure causes capillary constriction resulting in no reflow during AMI and that smaller no reflow zones in GPR39-knockout and VC43-treated animals are associated with smaller infarct sizes. These results elucidate the mechanism of no reflow in AMI, as well as providing a therapeutic pathway for the condition. The mechanism of "no reflow" phenomenon, where the coronary artery is patent after treatment of acute myocardial infarction but tissue perfusion is not restored, is unknown. This condition is associated with worse outcome. Here, we show that GPR39-mediated pericyte contraction during reduced coronary perfusion pressure causes capillary constriction resulting in no reflow. Smaller no-reflow zones in GPR39-knockout animals and those treated with a GPR39 inhibitor are associated with smaller infarct size. These results could have important therapeutic implications.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpheart.00312.2021DOI Listing

Publication Analysis

Top Keywords

"no reflow"
12
reflow" phenomenon
12
acute myocardial
12
myocardial infarction
12
reduced coronary
12
coronary perfusion
12
perfusion pressure
12
pressure capillary
12
capillary constriction
12
phenomenon coronary
8

Similar Publications

Objective: Current guidelines recommend the use of glycoprotein IIb/IIIa (GpIIb/IIIa) inhibitors in patients with ST-segment elevation myocardial infarction (STEMI) only as a bail-out therapy. However, drug penetration to the jeopardised area may not be achieved due to impeded blood flow and increased microvascular resistance. Aim of our study is to investigate the impact of distal intracoronary GpIIb/IIIa inhibitor agent infusion in STEMI patients.

View Article and Find Full Text PDF

Background: Spontaneous reperfusion (SR) occurring before primary percutaneous coronary intervention (PPCI) can offer additional clinical benefits to patients with ST-segment elevation myocardial infarction (STEMI). The Platelet-to-White Blood Cell Ratio (PWR) has been recognized as a prognostic indicator in various diseases. We aimed to explore the relationship between PWR and SR in patients with STEMI undergoing PPCI.

View Article and Find Full Text PDF

Is Reperfusion Injury a Largely Intra-Ischemic Injury?

Stroke

December 2024

Department of Neurology, Institut de Psychiatrie et Neurosciences de Paris, INSERM U1266, GHU Paris Psychiatrie et Neurosciences, Université Paris Cité, France.

Reperfusion injury (RI) refers to an array of detrimental cellular and biochemical processes that are widely believed to be triggered by reperfusion following focal cerebral ischemia and to contribute to infarct extension and poor outcome despite complete recanalization. Accordingly, it is widely recommended that therapies targeting RI be administered after recanalization. The present topical review demonstrates, however, that the vast majority of, and possibly all, processes considered part of RI are not actually provoked by reperfusion but develop during the ischemic phase.

View Article and Find Full Text PDF

Background: Acute myocardial infarction (AMI) constitutes a major health problem with high mortality rates worldwide. In patients with ST-segment elevation myocardial infarction (STEMI), no-reflow phenomenon is a condition that adversely affects response to therapy. Previous studies have demonstrated that the CALLY index, calculated using C-reactive protein (CRP), albumin, and lymphocytes, is a reliable indicator of mortality in patients with non-cardiac diseases.

View Article and Find Full Text PDF

We compared chorioretinal microvascular of Slow Coronary Flow Phenomenon (SCFP) patients using Optical Coherence Tomography Angiography (OCTA) to healthy controls. We recruited 21 patients from September 2023 until January 2024 from two referral centers. We enrolled 21 age-sex-matched controls retrospectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!