Transarterial chemoembolization (TACE) is used to treat patients with unresectable hepatocellular carcinoma (HCC). We evaluated the clinical impact of a-fetoprotein (AFP) and circulating cell-free and tumor DNA (cfDNA and ctDNA) changes around the TACE procedure. Our prospective monocentric study enrolled consecutive patients treated with TACE, with samples collected at baseline (D - 1), Day 2 (D + 2) and 1 month (M + 1) after TACE. cfDNA was quantified by the fluorometric method, and ctDNA was quantified by digital polymerase chain reaction designed for two hotspot TERT mutations. Computerized tomography scans or magnetic resonance imaging were performed at M + 1 every 3 months following TACE and independently reviewed. The objective was to identify thresholds of cfDNA, ctDNA and AFP changes associated with progressive disease (PD) using receiver operating characteristic curves. Thirty-eight patients were included from March 2018 to March 2019. All markers significantly increased from D - 1 to D + 2 (P < .005), and cfDNA and ctDNA significantly decreased from D + 2 to M + 1 (P < .0001). The analysis of changes from D - 1 to M + 1 identified thresholds at +31.4% for cfDNA and 0% for ctDNA that were significantly associated with PD at M + 1 (44.4% [>+31.4%] vs 3.8% [≤+31.4%] and 50.0% [>0%] vs 5.0% [≤0%], respectively). No significant threshold was identified for AFP. Using a score combining cfDNA and ctDNA, the patients were classified into high- or low-risk PD groups at M + 1, with PD rates of 80.0% vs 4.3% (P = .001) and median progression-free survival times of 1.3 vs 10.3 months (P = .002). Our study suggests that cfDNA and ctDNA increases around the TACE procedure and are associated with therapeutic failure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ijc.33829 | DOI Listing |
Nat Commun
January 2025
Oxford Molecular Diagnostics Centre, Department of Oncology, University of Oxford, Oxford, UK.
The analysis of circulating tumour DNA (ctDNA) through minimally invasive liquid biopsies is promising for early multi-cancer detection and monitoring minimal residual disease. Most existing methods focus on targeted deep sequencing, but few integrate multiple data modalities. Here, we develop a methodology for ctDNA detection using deep (80x) whole-genome TET-Assisted Pyridine Borane Sequencing (TAPS), a less destructive approach than bisulphite sequencing, which permits the simultaneous analysis of genomic and methylomic data.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Shuwen Biotech Co., Ltd., Moganshan National High tech Zone, Building 3, No. 333, Changhong Middle Street, Deqing, China.
Over the past five years, circulating tumor DNA (ctDNA) testing has emerged as a game-changer in cancer research, serving as a less invasive and highly sensitive method to monitor tumor dynamics. CtDNA testing has a wide range of potential applications in breast cancer (BC) management, including diagnosis, monitoring treatment responses, identifying resistance mutations, predicting prognosis, and detecting future relapses. In this review, we focus on the prognostic and predictive value of ctDNA testing for BC in both neoadjuvant and adjuvant settings.
View Article and Find Full Text PDFAm J Hematol
January 2025
Division of Oncologic Sciences, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA.
Acute myeloid leukemia (AML) is a genetically heterogeneous disease with high rates of relapse after initial treatment. Identifying measurable residual disease (MRD) following initial therapy is essential to assess response, predict patient outcomes, and identify those in need of additional intervention. Currently, MRD analysis relies on invasive, serial bone marrow (BM) biopsies, which complicate sample availability and processing time and negatively impact patient experience.
View Article and Find Full Text PDFSci Rep
January 2025
Translational Research Laboratory, Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Navi Mumbai, India.
In this study, we measured human epidermal growth factor receptor (EGFR) mutations in both tissue and circulating tumor DNA (ctDNA) by using beads, emulsions, amplifications and magnetic polymerase chain reaction (BEAMing PCR). Noninvasive mutation detection by assessing circulating tumor DNA (ctDNA) offers many advantages over tumor biopsy. One hundred non-small cell lung cancer (NSCLC) patients were enrolled, and both preoperative plasma samples and formalin-fixed and paraffin-embedded (FFPE) samples were collected for the study.
View Article and Find Full Text PDFJCO Precis Oncol
January 2025
Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center, Tampa, FL.
Purpose: This study aimed to assess (1) the prognostic value of circulating tumor DNA (ctDNA) and (2) the ability of ctDNA to detect recurrence compared with standard surveillance in curatively resected early-stage biliary tract cancer (BTC).
Methods: This retrospective, multicenter cohort study evaluated serial ctDNA testing for surveillance in patients with early-stage BTC after curative resection. We evaluated the relapse-free survival (RFS) by ctDNA positivity.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!