Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The hinge structure, also known as hinge region or bend, is a special structure found in some antimicrobial peptides. Most studies on antimicrobial peptides focused on the standard secondary structure of α-helix and β-sheet, while the hinge structure and its functions were rarely studied. The hinge structure confers the antimicrobial peptides an improved structural flexibility, which may promote their disruptive effect on bacterial membrane or their binding efficiency to the intracellular targets, thus resulting in a higher antibacterial activity. Meanwhile, the hinge structure may reduce the structural rigidity, which may eliminate the cytotoxicity of antimicrobial peptides to eukaryotic cells. This article reviews the structural characteristics of the hinge structure, its effects on the biological activity of antimicrobial peptides and application in the molecular design, with the aim to provide a reference for the design and development of new antimicrobial peptides.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13345/j.cjb.200728 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!